1. Find the inverses of the following matrices if possible:

(a)
$$\begin{bmatrix} 2 & a \\ 0 & 3 \end{bmatrix}$$

(b) $\begin{bmatrix} 5 & 1 & 1 \\ 1 & 3 & 2 \\ -2 & 2 & 1 \end{bmatrix}$
(c) $\begin{bmatrix} x & x & x & x \\ x & 2x & x & x \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2y & y \end{bmatrix}$

2. Find the determinants of the following matrices. Which matrices are singular?

(a)
$$\begin{bmatrix} x & 1 \\ y & -z \end{bmatrix}$$

(b) $\begin{bmatrix} 1 & -2 & -1 \\ 1 & 0 & 5 \\ 3 & -1 & 2 \end{bmatrix}$
(c) $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & 0 & 5 \\ 0 & 0 & -2 & 2 \\ 0 & 0 & 0 & 5 \end{bmatrix}$
(d) $\begin{bmatrix} x & x & x & x \\ 1 & 2 & 0 & 5 \\ 0 & 0 & 2y & y \\ 0 & 0 & 4 & 5 \end{bmatrix}$

3. Find

- a basis of the null space
- a basis of the column space
- $\bullet~$ the rank

of the following matrices:

(a)
$$\begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 2 & 8 & 12 & 7 & 1 \end{bmatrix}$$

(b) $\begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 3 & 2 & 3 \\ 2 & 4 & 3 & 2 \end{bmatrix}$

(c)
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{bmatrix}$$

4. Find a basis and the dimension for the following subspaces:

(a) Span
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\}$$

(b) vectors $\begin{bmatrix} x\\y\\z \end{bmatrix}$ satisfying the relation $x + 2y + 3z = 0$
(c) vectors $\begin{bmatrix} x\\y\\z \end{bmatrix}$ satisfying the relation $x = -2y - 3z$ and $4x + 5y + 6z = 0$

- 5. Show that $\mathcal{B} = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix} \right\}$ are bases of \mathbb{R}^2 .
 - (a) Find the coordinates $[\boldsymbol{x}]_{\mathcal{B}}$ and $[\boldsymbol{x}]_{\mathcal{C}}$ (relative to the bases \mathcal{B} and \mathcal{C} , respectively) for the vector $\boldsymbol{x} = \begin{bmatrix} -5 \\ -4 \end{bmatrix}$.
 - (b) Find the change-of-coordinates matrix for the coordinate change from basis \mathcal{B} to the standard basis $\{e_1, e_2\}$.
 - (c) Find the change-of-coordinates matrix for the coordinate change from basis C to the standard basis.
 - (d) Find the change-of-coordinates matrix for the coordinate change from the standard basis to basis C.
 - (e) Find the change-of-coordinates matrix $P_{\mathcal{C}\leftarrow\mathcal{B}}$ for the coordinate change from basis \mathcal{B} to basis \mathcal{C} .
- 6. Compute eigenvectors, corresponding eigenvectors (eigenspaces), and diagonalize the following matrices if possible.

(a)
$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} x & 1 \\ 0 & x \end{bmatrix}$$

(c)
$$\begin{bmatrix} x & y \\ y & x \end{bmatrix}$$

(d)
$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 & 4 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 6 & 5 \end{bmatrix}$$

7. (a) Show that the vectors $\boldsymbol{x} = \begin{bmatrix} 2\\2\\1 \end{bmatrix}$ and $\boldsymbol{y} = \begin{bmatrix} 1\\-2\\2 \end{bmatrix}$ are orthogonal. (b) Find the projection of the vector $\boldsymbol{z} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ onto the subspace $L = \operatorname{Span}\{\boldsymbol{x}, \boldsymbol{y}\}$.

(c) Find the length of the projection of \boldsymbol{z} on the orthogonal complement L^{\perp} .

8. True or false?

- (a) For two square matrices A and B it is always true that AB = BA.
- (b) A 3×5 matrix must have the nullspace of dimension at least 2.
- (c) $\operatorname{Nul}(A) = \operatorname{Col}(A^T).$
- (d) A regular matrix always has determinant equal to zero.
- (e) $\det A = \det A^T$.
- (f) If rank of A is 1 then all of its rows are multiples of each other.
- (g) The sum of any two vectors in a vector subspace is also in the vector subspace.
- (h) If $\{\boldsymbol{u}, \boldsymbol{v}\}$ is a basis of a subspace V, then $\{2\boldsymbol{u} + 3\boldsymbol{v}, \boldsymbol{v}\}$ is also a basis of V.
- (i) For any invertible matrix A, det $A^{-1} = (\det A)^{-1}$.
- (j) Any $n \times n$ matrix has n distinct eigenvalues.
- (k) Eigenvectors of any $n \times n$ matrix always span \mathbb{R}^n .
- (1) If \boldsymbol{x} is an eigenvector of A then $-2\boldsymbol{x}$ is an eigenvector of -A.
- (m) If 2 is an eigenvalue of A then 6 is an eigenvector of 3A.
- (n) If \boldsymbol{u} and \boldsymbol{v} are eigenvectors of A corresponding to the same eigenvalue, then $2\boldsymbol{u} + 3\boldsymbol{v}$ is also an eigenvector of A.
- (o) If A is diagonalizable then A^2 is also diagonalizable.
- (p) If $\boldsymbol{x} \cdot \boldsymbol{y} = \boldsymbol{x} \cdot \boldsymbol{z} = 0$, then $\boldsymbol{y} \cdot \boldsymbol{z} = 0$.
- (q) If $\boldsymbol{x} \cdot \boldsymbol{y} = 0$, then the projection of \boldsymbol{y} onto \boldsymbol{x} is the zero vector.
- (r) The orthogonal complement to the span of 2 linearly independent vectors in \mathbb{R}^4 is 2-dimensional.