1. Definitions and statements of results:
(a) Define what it means for a set S of vectors in a linear space V to span V.
(b) State the Cauchy-Schwartz inequality for vectors x, y in a Euclidean space V, including the condition stating when equality holds.
2. Let x_{1}, \ldots, x_{n} be positive real numbers. Define the arithmetic mean of x_{1}, \ldots, x_{n} to be

$$
A M\left(x_{1}, \ldots, x_{n}\right)=\frac{x_{1}+\cdots+x_{n}}{n}
$$

and define the harmonic mean of x_{1}, \ldots, x_{n} to be

$$
H M\left(x_{1}, \ldots, x_{n}\right)=\frac{n}{\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}} .
$$

Use the Cauchy-Schwarz inequality to show that $H M\left(x_{1}, \ldots, x_{n}\right) \leq A M\left(x_{1}, \ldots, x_{n}\right)$, with equality if and only if $x_{1}=\cdots=x_{n}$.
3. Find a unit vector u orthogonal to $v=(1,-3,2)$ and parallel to the plane $x+5 y-z=$ 1. Find the volume of the parallelipiped based on u, v, and the unit normal vector of the given plane.
4. Use Cramer's rule to solve

$$
\left\{\begin{aligned}
x+2 y+3 z & =5 \\
2 x-y+4 z & =11 \\
-y+z & =3
\end{aligned}\right.
$$

5. Determine whether or not S is a subspace of \mathbb{R}^{3} in the following examples:
(a) $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x=y=z\right\}$
(b) $S=\left\{(x, y, z) \in \mathbb{R}^{3}: y=2 x\right.$ and $\left.z=3 x\right\}$
6. Let P_{n} denote the linear space of all real polynomials of degree at most n. Determine whether or not S is a subspace of P_{n} in the following examples:
(a) $S=\left\{f \in P_{n}: f(1)=0\right\}$
(b) $S=\left\{f \in P_{n}: f(x) \geq 0\right.$ for all $\left.x\right\}$
7. Let P_{2} be the linear space of all polynomials of degree at most 2 .
(a) Is $t^{2}-1$ in the subspace of P_{2} spanned by $\left\{1+t, 1-t, t^{2}+2\right\}$?
(b) Show that the polynomials $f_{1}=1, f_{2}=t-1, f_{3}=(t-1)^{2}$ form a basis for P_{2}.
(c) Find the coordinates of $2 t^{2}-5 t+6$ relative to the ordered basis $\left(f_{1}, f_{2}, f_{3}\right)$ for P_{2}.
8. Let $V=C(0,1)$ be the linear space of all continuous functions on the interval $[0,1]$, and define an inner product on V by setting

$$
\langle f, g\rangle=\int_{0}^{1} t^{2} f(t) g(t) d x
$$

With respect to this inner product:
(a) What are the norms of the functions $f(x)=\pi$ and $g(x)=x$?
(b) What is the cosine of the angle between the functions $f(x)=\pi$ and $g(x)=x$?
9. Let V be the subspace of \mathbb{R}^{3} spanned by the vectors $x_{1}=(1,0,1)$ and $x_{2}=(-1,1,2)$.
(a) Find the coordinates ($=$ components) of the vector $v=(0,1,3)$ with respect to the ordered basis $\left(x_{1}, x_{2}\right)$ for V.
(b) Use the Gram-Schmidt procedure to find an orthogonal basis for V.
10. Let V be a finite-dimensional Euclidean space, let W be a subspace of V, and let W^{\perp} be the orthogonal complement of W.
(a) Prove that every vector $x \in V$ can be written uniquely as $x=y+z$ with $y \in W$ and $z \in W^{\perp}$.
(b) Prove that $\|x\|^{2}=\|y\|^{2}+\|z\|^{2}$.
(c) Prove that $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)$. [Hint: If $Y=\left\{y_{1}, \ldots, y_{k}\right\}$ is an orthogonal basis for W and $Z=\left\{z_{1}, \ldots, z_{l}\right\}$ is an orthogonal basis for W^{\perp}, show that $Y \cup Z=\left\{y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right\}$ is an orthogonal basis for V.]

