Tue, Dec 14th, 2:50pm-5:40pm, Skiles 271

Topics/keywords:

- Vector algebra: the dot and cross products, norm, angle between two vectors, scalar triple product.
- Linear span, linear independence, basis, dimension.
- Applications: lines/planes in \mathbb{R}^{2} and \mathbb{R}^{3}, conic sections.
- Linear spaces: \mathbb{R}^{n} and \mathbb{C}^{n}, functional spaces (e.g., space of polynomials).
- Euclidean spaces: inner product, Cauchy-Schwartz inequality, Gram-Schmidt process.
- Linear maps: kernel(nullspace) and image(range), rank and nullity, one-to-one and onto.
- Matrices: matrix representation of a map with respect to the given bases, space of matrices vs. space of linear maps, Gauss-Jordan method, solving a system of linear equations, inverse matrix.
- Determinants: axioms, computation via Gauss-Jordan, properties (e.g., multilinearity), computation via cofactors.

Be prepared to state theorems, outline algorithms, and define any of the concepts above.
The following are practice questions:

1. A line is given by

$$
\left\{\begin{array}{r}
x+2 y+5 z=1 \\
3 x-4 y-5 z=3
\end{array}\right.
$$

(a) Describe the line in the parametric form $L(P ; A)=\{P+t A: t \in \mathbb{R}\}$.
(b) What is the point of intersection of the given line and the plane $-x+y+z=0$?
(c) Describe the set of planes forming the angle of $\pi / 3$ with the given line.
2. For which values of a the conic section $x^{2}+2 a x y+4 y^{2}+x+y+1=0$ is
(a) ellipse?
(b) hyperbola?
(c) parabola?
3. Let V be the linear space of functions on defined on \mathbb{R}. A linear subspace W is spanned by $\left\{1, \cos x, \sin x, \cos ^{2} x, \sin ^{2} x\right\}$.
(a) Find a basis of W.
(b) Find the coordinates of the function $\cos 2 x$ in that basis.
(c) What is the dimension of W ?
4. Prove that for functions f and g continuous on the interval $[a, b]$ the following inequality holds:

$$
\left(\int_{a}^{b} t^{2} f(t) g(t) d t\right)^{2} \leq\left(\int_{a}^{b} t^{2} f(t)^{2} d t\right)\left(\int_{a}^{b} t^{2} g(t)^{2} d t\right)
$$

5. page $110, \# 16$.
6. Let $V=P_{3}$, the linear space of polynomial of degree at most 3. Define the map $T: V \rightarrow V$ as follows:

$$
T(p(x))=p^{\prime}(x)+p(x)
$$

(a) Find the matrix A representing the map with respect to the basis $\left\{1, x, x^{2}, x^{3}\right\}$.
(b) Is the map T onto? one-to-one?
(c) Is T invertible? If so, find the inverse of T.
7. Prove that for a square matrix A,
(a) if $A^{2}=0$ then $I-A$ is invertible.
(b) if $A^{m}=0$ then $I-A$ is invertible, for any positive integer m.
8. Find the inverse of

$$
A=\left[\begin{array}{ccc}
1 & 1 & -2 \\
2 & -2 & 2 \\
-4 & 0 & 2
\end{array}\right]
$$

9. For a parameter $a \in \mathbb{R}$ solve the system

$$
\begin{array}{r}
x-y+z+w=4 \\
2 x-y+w=6 \\
x+y-z+w=a
\end{array}
$$

10. page $185, \# 5$.
