Homework for the lecture on Oct 28

1. Find the least squares regression line for the data points

$$
(0,10),(2,6),(3,7),(4,6),(5,3),(8,1) .
$$

2. Let

$$
A=\left(\begin{array}{ll}
2 & 1 \\
4 & 2 \\
1 & 1
\end{array}\right), b=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

(a) Find the orthogonal projection of b onto the range of A.
(b) Find the best approximate (least squares) solution to the overdetermined system of equations $A x=b$.
3. The mean \bar{x} and standard deviation σ_{x} of a collection x_{1}, \ldots, x_{n} of real numbers are given by the formulas

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}, \sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}} .
$$

The Pearson correlation coefficient of a collection of $n \geq 2$ distinct data points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbf{R}^{2}$ is defined to be

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n \sigma_{x} \sigma_{y}},
$$

where σ_{x} (resp. σ_{y}) denotes the standard deviation of x_{1}, \ldots, x_{n} (resp. y_{1}, \ldots, y_{n}) and \bar{x} (resp. \bar{y}) denotes the mean of x_{1}, \ldots, x_{n} (resp. y_{1}, \ldots, y_{n}). (The quantity $\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$ is called the covariance, so the Pearson correlation coefficient is just the covariance divided by the product of the standard deviations.)
(a) Prove that $-1 \leq r \leq 1$, and that the data points lie on a straight line if and only if $r= \pm 1$. [Hint: Use the Cauchy-Schwartz inequality.]
(b) Calculate the Pearson correlation coefficient for the data points in Problem 1.

