Math 1512 Fall 2010

NOTES ON LEAST SQUARES APPROXIMATION

Given n data points (z1,y1), ..., (n,yn), we would like to find the line
L, with an equation of the form y = max + b, which is the “best fit” for the
given data points. We will do this using orthogonal projections and a general
approximation theorem from linear algebra, which we now recall.

1 Orthogonal projections and the approxima-
tion theorem

Let V be a Euclidean space, and let W be a finite-dimensional subspace
of V. Choose an orthogonal basis {ei,...,e,} for W (which exists by the
Gram-Schmidt procedure).

Definition 1. The orthogonal projection of an element x € V onto W is
given by the formula
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xT) =
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It is not obvious from the definition that py (z) is independent of the
choice of an orthogonal basis for W, but this is true, and follows from the
approximation theorem below.

We will use the following fact, which lies at the heart of the Gram-Schmidt
procedure, and which justifies the name “orthogonal projection”:

€;.

Lemma 1. For every x € V, we have v — py(x) € W=.

Proof. 1t suffices to show that (r — pw(x),e;) = 0 for each j = 1,...,m.
This follows from the following computation:

(x —pw(z),¢)) = (2,¢5) — {pw (), ;)

= (x,e E (2, )
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We can now state the main result of this section:

Theorem 1 (The approximation theorem). The orthogonal projection py (x)
is closer to x than any other element of W.

Proof. For any y € W, we can write z —y = (x — pw(x)) + (pw(x) —y). We
have py (r)—y € W, and by the above lemma we know that z—py (z) € W+.
The Pythagorean theorem (for general Euclidean spaces) now shows that

lz = ylI* = llz = pw (@) II* + pw () — ylI*
> |lz = pw(@)]*

with equality if and only if y = pw (). O

Note that it follows from the approximation theorem that py () is inde-
pendent of the choice of an orthogonal basis for W, since we have character-
ized pw(z) by a condition which does not make reference to any particular
basis.

2 The nearest solution to an overdetermined
system

A problem which arises in many contexts, including least squares approxi-
mation, is the following. Suppose A is an m X n matrix with more rows than
columns, and that the rank of A equals the number of columns. If a vector
y € R™ is not in the image of A, then (by definition) the equation Az =y
has no solution. In practice, one often wants to find a “best approximate
solution” (referred to as a least squares solution) to such a system, i.e., a
vector x € R™ for which || Az — y|| (or equivalently, ||Az — y||?) is as small as
possible.

To do this, we recall that the column space C' of A coincides with the
image (= range) of A. (This follows easily from the fact that if Ay,..., A,
are the columns of A and ey, ..., e, are the standard unit coordinate vectors
in R™, then Ae; = A;.) Recall also that since A is assumed to have rank n,
the kernel of A equals {0}.



Theorem 2. Let A be an m X n matriz with rank n, and let P = Pc denote
orthogonal projection onto the image of A. Then for every y € R™, the
equation Ax = Py has a unique solution x, € R"™. Moreover, x, is the
best approximate solution to the equation Ax =y, in the sense that for any
r e R",
Az, - y|? < Az - y)?

with equality iof and only if x = x,.
Proof. By definition, the orthogonal projection Py belongs to the image of A.
Therefore Az, = Py for some x, € R"™. Moreover, x, is uniquely determined,
since if Ax; = Axg then A(x; —25) = 0 and 21 — 29 € ker(A). But ker(A) =
{0} by hypothesis (since A has rank n), so x; — x5 = 0, i.e., x; = .

By the approximation theorem, we know that

1Py —y|* < || Az — g

for every x € R", with equality if and only if Ax = Py. Substituting Ax,
for Py into this inequality gives the desired result. O]

Note that Az, = Py implies
AT Az, = ATPy+ AT(y — Py) = Ay,
since y — Py is orthogonal to the columns of A (rows of AT) and, therefore,
AT(y — Py) = 0.
Theorem 3. If N(A) = 0 then the solution of the normal system of equations
AT Az = ATy
exists and equals the least squares solution of Ax = y.

Proof. The above discussion shows if z, is the least squares solution of Ax =y
then it satisfies AT Az = ATy. To complete the proof we shall show that AT A
is a regular square matrix.

Let A € R™™ and N(A) = 0 then one can find the reduced row echelon
form A’ = C' A with
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where [ is an n X n identity matrix and C' is the product of matrices corre-
sponding to the elementary row trasformations applied to A. Now,

ATA=A"TCTcA =CTC

due to the particular shape of A’. Since C is regular, and so is C7, and a
product of regular matrices is regular, AT A is regular as well. n

3 Least squares approximation

We now return to the least squares approximation problem. Given n data
points (z1,y1), .-, (Zn, ys) in R? we would like to find a line L of the form
y = mx + b which is the “closest fit” for the given data points, in the sense
that the “least squares error” term
S(m,b) = (ma; +b—y;)*
i=1

is as small as possible. A method for doing this was first developed by
Legendre and Gauss between 1805 and 1810 in connection with astronomical
observations.

To find a formula for the “least squares regression line” L, we note that
the system of n equations in the two unknowns m and b

mx; +b =1y
mz, +b =y,
is overdetermined. If we assume that at least two of the the z-coordinates
x1,...,T, are distinct, then the matrix
T1 1
A= :
z, 1

has rank 2, and the system we are trying to solve can be written as Av =Y,
where



Note that there is no reason that Y should lie in the image of A, so this system
typically has no solution. However, let P denote orthogonal projection onto
the column space (= image) of A. Then by Theorem 2, there is a unique
solution v, = (my, b,) to the equation Av = PY’, and this solution minimizes
the quantity ||Av—Y|?. Since ||Av—Y||? = S(m,b), it follows that the best-
fit line L that we are looking for is precisely the line given by the equation
Y = m,T + b,.

We will now derive a concrete formula for m, and b,, and hence for the
least squares regression line L.

Let T = % Yo, Y= % > i, Ui, and let

S
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With this notation, we have:

Theorem 4. The least squares regression line L is given by the equation
Yy = m.x + by, where o

(X=X -

(X —-X) (X —
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= =l
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and
b, =7y — m,T.

Proof. By Theorem 3 the least squares solution v, satisfies
AT Ay = ATY.
Compute
nx n ny

It follows immediately that b = — mx; by substitution we get

(XX —nz )m=X Y — nzy.

Now, note that X - X = X - X =nz?and X Y =X Y =X Y = nay
From the equation above it follows that
(X-X)- X—-X)m=X-X)- (Y -Y)
]



Example 1. Suppose the three data points are (1,2),(2,5),(3,7). Then
T =2and y = 14/3. We have X = (1,2,3) and Y = (2,5,7), so that
X—-X=(-1,0,1)and Y =Y = (-8/3,1/3,7/3). Therefore m, = 5/2 and

b, = —1/3, so that the least squares regression line is given by the equation
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