Notes on least squares approximation

Given n data points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, we would like to find the line L, with an equation of the form $y=m x+b$, which is the "best fit" for the given data points. We will do this using orthogonal projections and a general approximation theorem from linear algebra, which we now recall.

1 Orthogonal projections and the approximation theorem

Let V be a Euclidean space, and let W be a finite-dimensional subspace of V. Choose an orthogonal basis $\left\{e_{1}, \ldots, e_{m}\right\}$ for W (which exists by the Gram-Schmidt procedure).
Definition 1. The orthogonal projection of an element $x \in V$ onto W is given by the formula

$$
p_{W}(x)=\sum_{i=1}^{m} \frac{\left\langle x, e_{i}\right\rangle}{\left\langle e_{i}, e_{i}\right\rangle} e_{i} .
$$

It is not obvious from the definition that $p_{W}(x)$ is independent of the choice of an orthogonal basis for W, but this is true, and follows from the approximation theorem below.

We will use the following fact, which lies at the heart of the Gram-Schmidt procedure, and which justifies the name "orthogonal projection":
Lemma 1. For every $x \in V$, we have $x-p_{W}(x) \in W^{\perp}$.
Proof. It suffices to show that $\left\langle x-p_{W}(x), e_{j}\right\rangle=0$ for each $j=1, \ldots, m$. This follows from the following computation:

$$
\begin{aligned}
\left\langle x-p_{W}(x), e_{j}\right\rangle & =\left\langle x, e_{j}\right\rangle-\left\langle p_{W}(x), e_{j}\right\rangle \\
& =\left\langle x, e_{j}\right\rangle-\left\langle\sum_{i=1}^{m} \frac{\left\langle x, e_{i}\right\rangle}{\left\langle e_{i}, e_{i}\right\rangle} e_{i}, e_{j}\right\rangle \\
& =\left\langle x, e_{j}\right\rangle-\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}\left\langle e_{j}, e_{j}\right\rangle \\
& =0 .
\end{aligned}
$$

We can now state the main result of this section:
Theorem 1 (The approximation theorem). The orthogonal projection $p_{W}(x)$ is closer to x than any other element of W.

Proof. For any $y \in W$, we can write $x-y=\left(x-p_{W}(x)\right)+\left(p_{W}(x)-y\right)$. We have $p_{W}(x)-y \in W$, and by the above lemma we know that $x-p_{W}(x) \in W^{\perp}$. The Pythagorean theorem (for general Euclidean spaces) now shows that

$$
\begin{aligned}
\|x-y\|^{2} & =\left\|x-p_{W}(x)\right\|^{2}+\left\|p_{W}(x)-y\right\|^{2} \\
& \geq\left\|x-p_{W}(x)\right\|^{2}
\end{aligned}
$$

with equality if and only if $y=p_{W}(x)$.
Note that it follows from the approximation theorem that $p_{W}(x)$ is independent of the choice of an orthogonal basis for W, since we have characterized $p_{W}(x)$ by a condition which does not make reference to any particular basis.

2 The nearest solution to an overdetermined system

A problem which arises in many contexts, including least squares approximation, is the following. Suppose A is an $m \times n$ matrix with more rows than columns, and that the rank of A equals the number of columns. If a vector $y \in \mathbf{R}^{n}$ is not in the image of A, then (by definition) the equation $A x=y$ has no solution. In practice, one often wants to find a "best approximate solution" (referred to as a least squares solution) to such a system, i.e., a vector $x \in \mathbf{R}^{n}$ for which $\|A x-y\|$ (or equivalently, $\|A x-y\|^{2}$) is as small as possible.

To do this, we recall that the column space C of A coincides with the image ($=$ range) of A. (This follows easily from the fact that if A_{1}, \ldots, A_{m} are the columns of A and e_{1}, \ldots, e_{m} are the standard unit coordinate vectors in \mathbf{R}^{m}, then $A e_{i}=A_{i}$.) Recall also that since A is assumed to have rank n, the kernel of A equals $\{0\}$.

Theorem 2. Let A be an $m \times n$ matrix with rank n, and let $P=P_{C}$ denote orthogonal projection onto the image of A. Then for every $y \in \mathbf{R}^{m}$, the equation $A x=P y$ has a unique solution $x_{*} \in \mathbf{R}^{n}$. Moreover, x_{*} is the best approximate solution to the equation $A x=y$, in the sense that for any $x \in \mathbf{R}^{n}$,

$$
\left\|A x_{*}-y\right\|^{2} \leq\|A x-y\|^{2}
$$

with equality if and only if $x=x_{*}$.
Proof. By definition, the orthogonal projection $P y$ belongs to the image of A. Therefore $A x_{*}=P y$ for some $x_{*} \in \mathbf{R}^{n}$. Moreover, x_{*} is uniquely determined, since if $A x_{1}=A x_{2}$ then $A\left(x_{1}-x_{2}\right)=0$ and $x_{1}-x_{2} \in \operatorname{ker}(A)$. But $\operatorname{ker}(A)=$ $\{0\}$ by hypothesis (since A has rank n), so $x_{1}-x_{2}=0$, i.e., $x_{1}=x_{2}$.

By the approximation theorem, we know that

$$
\|P y-y\|^{2} \leq\|A x-y\|
$$

for every $x \in \mathbf{R}^{n}$, with equality if and only if $A x=P y$. Substituting $A x_{*}$ for $P y$ into this inequality gives the desired result.

Note that $A x_{*}=P y$ implies

$$
A^{T} A x_{*}=A^{T} P y+A^{T}(y-P y)=A^{T} y,
$$

since $y-P y$ is orthogonal to the columns of A (rows of A^{T}) and, therefore, $A^{T}(y-P y)=0$.

Theorem 3. If $N(A)=0$ then the solution of the normal system of equations

$$
A^{T} A x=A^{T} y
$$

exists and equals the least squares solution of $A x=y$.
Proof. The above discussion shows if x_{*} is the least squares solution of $A x=y$ then it satisfies $A^{T} A x=A^{T} y$. To complete the proof we shall show that $A^{T} A$ is a regular square matrix.

Let $A \in \mathbf{R}^{m \times n}$ and $N(A)=0$ then one can find the reduced row echelon form $A^{\prime}=C A$ with

$$
A^{\prime}=\left[\begin{array}{l}
I \\
0
\end{array}\right] \in \mathbf{R}^{m \times n}
$$

where I is an $n \times n$ identity matrix and C is the product of matrices corresponding to the elementary row trasformations applied to A. Now,

$$
A^{T} A=A^{\prime T} C^{T} C A^{\prime}=C^{T} C
$$

due to the particular shape of A^{\prime}. Since C is regular, and so is C^{T}, and a product of regular matrices is regular, $A^{T} A$ is regular as well.

3 Least squares approximation

We now return to the least squares approximation problem. Given n data points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ in \mathbf{R}^{2}, we would like to find a line L of the form $y=m x+b$ which is the "closest fit" for the given data points, in the sense that the "least squares error" term

$$
S(m, b)=\sum_{i=1}^{n}\left(m x_{i}+b-y_{i}\right)^{2}
$$

is as small as possible. A method for doing this was first developed by Legendre and Gauss between 1805 and 1810 in connection with astronomical observations.

To find a formula for the "least squares regression line" L, we note that the system of n equations in the two unknowns m and b

$$
\begin{gathered}
m x_{1}+b=y_{1} \\
\vdots \\
m x_{n}+b=y_{n}
\end{gathered}
$$

is overdetermined. If we assume that at least two of the the x-coordinates x_{1}, \ldots, x_{n} are distinct, then the matrix

$$
A=\left(\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right)
$$

has rank 2, and the system we are trying to solve can be written as $A v=Y$, where

$$
v=\left[\begin{array}{c}
m \\
b
\end{array}\right], X=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], Y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] .
$$

Note that there is no reason that Y should lie in the image of A, so this system typically has no solution. However, let P denote orthogonal projection onto the column space ($=$ image) of A. Then by Theorem 2 , there is a unique solution $v_{*}=\left(m_{*}, b_{*}\right)$ to the equation $A v=P Y$, and this solution minimizes the quantity $\|A v-Y\|^{2}$. Since $\|A v-Y\|^{2}=S(m, b)$, it follows that the bestfit line L that we are looking for is precisely the line given by the equation $y=m_{*} x+b_{*}$.

We will now derive a concrete formula for m_{*} and b_{*}, and hence for the least squares regression line L.

Let $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$, and let

$$
\bar{X}=\left[\begin{array}{c}
\bar{x} \\
\vdots \\
\bar{x}
\end{array}\right], \bar{Y}=\left[\begin{array}{c}
\bar{y} \\
\vdots \\
\bar{y}
\end{array}\right] .
$$

With this notation, we have:
Theorem 4. The least squares regression line L is given by the equation $y=m_{*} x+b_{*}$, where

$$
m_{*}=\frac{(X-\bar{X}) \cdot(Y-\bar{Y})}{(X-\bar{X}) \cdot(X-\bar{X})}
$$

and

$$
b_{*}=\bar{y}-m_{*} \bar{x}
$$

Proof. By Theorem 3 the least squares solution v_{*} satisfies

$$
A^{T} A v=A^{T} Y
$$

Compute

$$
A^{T} A=\left(\begin{array}{cc}
X \cdot X & n \bar{x} \\
n \bar{x} & n
\end{array}\right) ; \quad A^{T} Y=\left[\begin{array}{c}
X \cdot Y \\
n \bar{y}
\end{array}\right]
$$

It follows immediately that $b=\bar{y}-m \bar{x}$; by substitution we get

$$
\left(X \cdot X-n \bar{x}^{2}\right) m=X \cdot Y-n \bar{x} \bar{y}
$$

Now, note that $X \cdot \bar{X}=\bar{X} \cdot \bar{X}=n \bar{x}^{2}$ and $X \cdot \bar{Y}=\bar{X} \cdot Y=\bar{X} \cdot \bar{Y}=n \bar{x} \bar{y}$. From the equation above it follows that

$$
(X-\bar{X}) \cdot(X-\bar{X}) m=(X-\bar{X}) \cdot(Y-\bar{Y})
$$

Example 1. Suppose the three data points are $(1,2),(2,5),(3,7)$. Then $\bar{x}=2$ and $\bar{y}=14 / 3$. We have $X=(1,2,3)$ and $Y=(2,5,7)$, so that $X-\bar{X}=(-1,0,1)$ and $Y-\bar{Y}=(-8 / 3,1 / 3,7 / 3)$. Therefore $m_{*}=5 / 2$ and $b_{*}=-1 / 3$, so that the least squares regression line is given by the equation $y=\frac{5}{2} x-\frac{1}{3}$.

