
Math 1512 Fall 2010

Notes on least squares approximation

Given n data points (x1, y1), . . . , (xn, yn), we would like to find the line
L, with an equation of the form y = mx + b, which is the “best fit” for the
given data points. We will do this using orthogonal projections and a general
approximation theorem from linear algebra, which we now recall.

1 Orthogonal projections and the approxima-

tion theorem

Let V be a Euclidean space, and let W be a finite-dimensional subspace
of V . Choose an orthogonal basis {e1, . . . , em} for W (which exists by the
Gram-Schmidt procedure).

Definition 1. The orthogonal projection of an element x ∈ V onto W is
given by the formula

pW (x) =
m∑

i=1

〈x, ei〉
〈ei, ei〉

ei.

It is not obvious from the definition that pW (x) is independent of the
choice of an orthogonal basis for W , but this is true, and follows from the
approximation theorem below.

We will use the following fact, which lies at the heart of the Gram-Schmidt
procedure, and which justifies the name “orthogonal projection”:

Lemma 1. For every x ∈ V , we have x− pW (x) ∈ W⊥.

Proof. It suffices to show that 〈x − pW (x), ej〉 = 0 for each j = 1, . . . ,m.
This follows from the following computation:

〈x− pW (x), ej〉 = 〈x, ej〉 − 〈pW (x), ej〉

= 〈x, ej〉 − 〈
m∑

i=1

〈x, ei〉
〈ei, ei〉

ei, ej〉

= 〈x, ej〉 −
〈x, ej〉
〈ej, ej〉

〈ej, ej〉

= 0.
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We can now state the main result of this section:

Theorem 1 (The approximation theorem). The orthogonal projection pW (x)
is closer to x than any other element of W .

Proof. For any y ∈ W , we can write x− y = (x− pW (x)) + (pW (x)− y). We
have pW (x)−y ∈ W , and by the above lemma we know that x−pW (x) ∈ W⊥.
The Pythagorean theorem (for general Euclidean spaces) now shows that

‖x− y‖2 = ‖x− pW (x)‖2 + ‖pW (x)− y‖2

≥ ‖x− pW (x)‖2

with equality if and only if y = pW (x).

Note that it follows from the approximation theorem that pW (x) is inde-
pendent of the choice of an orthogonal basis for W , since we have character-
ized pW (x) by a condition which does not make reference to any particular
basis.

2 The nearest solution to an overdetermined

system

A problem which arises in many contexts, including least squares approxi-
mation, is the following. Suppose A is an m×n matrix with more rows than
columns, and that the rank of A equals the number of columns. If a vector
y ∈ Rn is not in the image of A, then (by definition) the equation Ax = y
has no solution. In practice, one often wants to find a “best approximate
solution” (referred to as a least squares solution) to such a system, i.e., a
vector x ∈ Rn for which ‖Ax− y‖ (or equivalently, ‖Ax− y‖2) is as small as
possible.

To do this, we recall that the column space C of A coincides with the
image (= range) of A. (This follows easily from the fact that if A1, . . . , Am

are the columns of A and e1, . . . , em are the standard unit coordinate vectors
in Rm, then Aei = Ai.) Recall also that since A is assumed to have rank n,
the kernel of A equals {0}.
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Theorem 2. Let A be an m× n matrix with rank n, and let P = PC denote
orthogonal projection onto the image of A. Then for every y ∈ Rm, the
equation Ax = Py has a unique solution x∗ ∈ Rn. Moreover, x∗ is the
best approximate solution to the equation Ax = y, in the sense that for any
x ∈ Rn,

‖Ax∗ − y‖2 ≤ ‖Ax− y‖2

with equality if and only if x = x∗.

Proof. By definition, the orthogonal projection Py belongs to the image of A.
Therefore Ax∗ = Py for some x∗ ∈ Rn. Moreover, x∗ is uniquely determined,
since if Ax1 = Ax2 then A(x1 − x2) = 0 and x1 − x2 ∈ ker(A). But ker(A) =
{0} by hypothesis (since A has rank n), so x1 − x2 = 0, i.e., x1 = x2.

By the approximation theorem, we know that

‖Py − y‖2 ≤ ‖Ax− y‖

for every x ∈ Rn, with equality if and only if Ax = Py. Substituting Ax∗
for Py into this inequality gives the desired result.

Note that Ax∗ = Py implies

AT Ax∗ = AT Py + AT (y − Py) = AT y,

since y − Py is orthogonal to the columns of A (rows of AT ) and, therefore,
AT (y − Py) = 0.

Theorem 3. If N(A) = 0 then the solution of the normal system of equations

AT Ax = AT y

exists and equals the least squares solution of Ax = y.

Proof. The above discussion shows if x∗ is the least squares solution of Ax = y
then it satisfies AT Ax = AT y. To complete the proof we shall show that AT A
is a regular square matrix.

Let A ∈ Rm×n and N(A) = 0 then one can find the reduced row echelon
form A′ = CA with

A′ =

[
I
0

]
∈ Rm×n,
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where I is an n × n identity matrix and C is the product of matrices corre-
sponding to the elementary row trasformations applied to A. Now,

AT A = A′T CT CA′ = CT C

due to the particular shape of A′. Since C is regular, and so is CT , and a
product of regular matrices is regular, AT A is regular as well.

3 Least squares approximation

We now return to the least squares approximation problem. Given n data
points (x1, y1), . . . , (xn, yn) in R2, we would like to find a line L of the form
y = mx + b which is the “closest fit” for the given data points, in the sense
that the “least squares error” term

S(m, b) =
n∑

i=1

(mxi + b− yi)
2

is as small as possible. A method for doing this was first developed by
Legendre and Gauss between 1805 and 1810 in connection with astronomical
observations.

To find a formula for the “least squares regression line” L, we note that
the system of n equations in the two unknowns m and b

mx1 + b = y1

...

mxn + b = yn

is overdetermined. If we assume that at least two of the the x-coordinates
x1, . . . , xn are distinct, then the matrix

A =

x1 1
...

...
xn 1


has rank 2, and the system we are trying to solve can be written as Av = Y ,
where

v =

[
m
b

]
, X =

x1
...

xn

 , Y =

y1
...

yn

 .
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Note that there is no reason that Y should lie in the image of A, so this system
typically has no solution. However, let P denote orthogonal projection onto
the column space (= image) of A. Then by Theorem 2, there is a unique
solution v∗ = (m∗, b∗) to the equation Av = PY , and this solution minimizes
the quantity ‖Av−Y ‖2. Since ‖Av−Y ‖2 = S(m, b), it follows that the best-
fit line L that we are looking for is precisely the line given by the equation
y = m∗x + b∗.

We will now derive a concrete formula for m∗ and b∗, and hence for the
least squares regression line L.

Let x = 1
n

∑n
i=1 xi, y = 1

n

∑n
i=1 yi, and let

X =

x
...
x

 , Y =

y
...
y

 .

With this notation, we have:

Theorem 4. The least squares regression line L is given by the equation
y = m∗x + b∗, where

m∗ =
(X −X) · (Y − Y )

(X −X) · (X −X)

and
b∗ = y −m∗x.

Proof. By Theorem 3 the least squares solution v∗ satisfies

AT Av = AT Y.

Compute

AT A =

(
X ·X nx̄

nx̄ n

)
; AT Y =

[
X · Y
nȳ

]
It follows immediately that b = y −mx; by substitution we get

(X ·X − nx̄2) m = X · Y − nx̄ȳ.

Now, note that X · X̄ = X̄ · X̄ = nx̄2 and X · Ȳ = X̄ · Y = X̄ · Ȳ = nx̄ȳ.
From the equation above it follows that

(X −X) · (X −X) m = (X −X) · (Y − Y ).
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Example 1. Suppose the three data points are (1, 2), (2, 5), (3, 7). Then
x = 2 and y = 14/3. We have X = (1, 2, 3) and Y = (2, 5, 7), so that
X −X = (−1, 0, 1) and Y − Y = (−8/3, 1/3, 7/3). Therefore m∗ = 5/2 and
b∗ = −1/3, so that the least squares regression line is given by the equation
y = 5

2
x− 1

3
.
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