1. (a) What is the difference between local and global minima/maxima?
(b) Summarize Lagrange's method for finding global optima.
(c) Define the Jacobian matrix of the transformation $F(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right)^{T}$.
(d) Outline Newton's method for approximating solutions of $F(x, y)=0$.
2. (a) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
10 & -6 \\
-6 & 10
\end{array}\right)
$$

(b) Write down an orthogonal matrix U such that $U^{T} A U$ is diagonal.
(c) Find the singular value decomposition, $A=V D U^{T}$ for the matrix

$$
A=\left(\begin{array}{cc}
3 & -1 \\
0 & 0 \\
1 & -3
\end{array}\right)
$$

3. (a) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
1 & -2 \\
-2 & 1
\end{array}\right)
$$

(b) Write down an orthogonal matrix U such that $U^{T} A U$ is diagonal.
(c) Perform the first step of Jacobi's diagonalization algorithm for the matrix

$$
A=\left(\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 1 & 1 \\
1 & 1 & 3
\end{array}\right)
$$

4. Set up Newton's method for solving the system of equations: $x^{2}+y^{2}-4=0$ and $x y-1=0$. Use as an initial guess the point $\boldsymbol{x}_{0}=(2,1)^{T}$ and calculate the next approximation \boldsymbol{x}_{1}.
5. Let $f(x, y)=x^{4}+y^{4}+4 x y$.
(a) Use Lagrange's method to find the maximum and the minimum of $f(x, y)$ subject to constraint $g(x, y)=x^{2}+y^{2}=16$.
(b) What are the global maxima and minima of $f(x, y)$ in the region $g(x, y) \leq 16$.
6. Let A be an $m \times n$ matrix of rank r
(a) Define a singular value decomposition of $A=V D U^{T}$.
(b) Define a generalized inverse of A.
(c) Define the rank s approximation.
7. (a) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
10 & -6 \\
-6 & 10
\end{array}\right)
$$

(b) Write down an orthogonal matrix U such that $U^{T} A U$ is diagonal.
(c) Find the singular value decomposition, $A=V D U^{T}$ for the matrix

$$
A=\left(\begin{array}{cc}
3 & -1 \\
0 & 0 \\
1 & -3
\end{array}\right)
$$

8. For the matrix

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2 \\
1 & 2
\end{array}\right)
$$

(a) Find the singular value decomposition $A=V D U^{T}$.
(b) Find a rank 1 approximation of A.
(c) Find the generalized inverse A^{+}.
(d) Using A^{+}find the least squares solution $\boldsymbol{x}=(x, y)^{T}$ for $A \boldsymbol{x}=(1,1,1)^{T}$.

