Thur Dec 16th, 8:00am-10:50am, Skiles 202. Office hours: Wed 3-5pm.
Topics/keywords:

- Schur factorization: 2×2 case.
- Householder reflections: real and complex cases.
- QR iteration: algorithm, cases when it is guaranteed to work, shifting eigenvalues.
- Matrix exponentials: exponentiating upper triangular matrices, using Schur factorization.
- Double integrals: type I and II repeated integrals, integrals in polar coordinates.
- Applications of integrals: area, volume.
- Change of variables in integrals: Jacobian matrix, linear coordinate transformations, general transformations.

Be prepared to state theorems, outline algorithms, and define any of the concepts above.

1. Establish a Schur decomposition $A=Q T Q^{T}$ with an upper-triangular T and orthogonal Q for

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right)
$$

2. Find a Householder reflection M mapping $\boldsymbol{x}=(3 i, 4)^{T}$ onto a multiple of \boldsymbol{e}_{1}.
3. Given a matrix A, describe how the sequence $A^{(k)}$ is created via QR iteration. Consider the matrix

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right)
$$

Compute its $Q R$ decomposition using a "good" Householder reflection. Compute the matrix $A^{(1)}$ obtained after one QR iteration.
4. Prove that an eigenvector of A is an eigenvector of $A+a I$ for any a. What is the "eigenvalue shifting" procedure?
5. Prove that if $(A-a I)$ is an invertible matrix then $(A-a I)^{-1}$ has the same eigenvalues as A. How is this fact used to speed up the QR iterations if a rough approximation a of an eigenvalue μ is known?
6. Give a definition of e^{A} for a square matrix A. Given a Schur decomposition $A=U T U^{*}$ rewrite e^{A} in terms of e^{T}.
7. Evaluate

$$
\iint_{\Omega} \frac{2 y}{x^{2}+1} d x d y
$$

where Ω is the region bounded by $x=0, x=1, y=0, y^{2}-x=0$.
8. Consider the solid bounded below by the $x y$-plane and above by the surface $z=$ $\cos \left(x^{2}+y^{2}\right)$ and containing a part of z-axis.
(a) Sketch the projection Ω of the solid onto the $x y$-plane.
(b) Find the volume of the solid using polar coordinates.
9. The region Ω in the plane is bounded by the lines $x+y=0, x+y=1,3 x-2 y=0$, and $3 x-2 y=2$. Calculate the following integral

$$
\iint_{\Omega}(4 x-y) d x d y
$$

10. Calculate using polar coordinates

$$
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

11. Sketch the petal curve given by $r=3 \sin (3 \theta)$ in the polar coordinates and find the area of one leaf of the region bounded by this curve.
