Thur Dec 16th, 8:00am-10:50am, Skiles 202. Office hours: Wed 3-5pm.

Topics/keywords:

- Schur factorization: 2×2 case.
- Householder reflections: real and complex cases.
- QR iteration: algorithm, cases when it is guaranteed to work, shifting eigenvalues.
- Matrix exponentials: exponentiating upper triangular matrices, using Schur factorization.
- Double integrals: type I and II repeated integrals, integrals in polar coordinates.
- Applications of integrals: area, volume.
- Change of variables in integrals: Jacobian matrix, linear coordinate transformations, general transformations.

Be prepared to state theorems, outline algorithms, and define any of the concepts above.

1. Establish a Schur decomposition $A = QTQ^T$ with an upper-triangular T and orthogonal Q for

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}.$$

- 2. Find a Householder reflection M mapping $\boldsymbol{x} = (3i, 4)^T$ onto a multiple of \boldsymbol{e}_1 .
- 3. Given a matrix A, describe how the sequence $A^{(k)}$ is created via QR iteration. Consider the matrix

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}.$$

Compute its QR decomposition using a "good" Householder reflection. Compute the matrix $A^{(1)}$ obtained after one QR iteration.

- 4. Prove that an eigenvector of A is an eigenvector of A + aI for any a. What is the "eigenvalue shifting" procedure?
- 5. Prove that if (A-aI) is an invertible matrix then $(A-aI)^{-1}$ has the same eigenvalues as A. How is this fact used to speed up the QR iterations if a rough approximation a of an eigenvalue μ is known?
- 6. Give a definition of e^A for a square matrix A. Given a Schur decomposition $A = UTU^*$ rewrite e^A in terms of e^T .
- 7. Evaluate

$$\iint_{\Omega} \frac{2y}{x^2 + 1} \, dx \, dy,$$

where Ω is the region bounded by $x = 0, x = 1, y = 0, y^2 - x = 0$.

- 8. Consider the solid bounded below by the xy-plane and above by the surface $z = \cos(x^2 + y^2)$ and containing a part of z-axis.
 - (a) Sketch the projection Ω of the solid onto the *xy*-plane.
 - (b) Find the volume of the solid using polar coordinates.
- 9. The region Ω in the plane is bounded by the lines x + y = 0, x + y = 1, 3x 2y = 0, and 3x 2y = 2. Calculate the following integral

$$\iint_{\Omega} (4x - y) \, dx \, dy.$$

10. Calculate using polar coordinates

$$\int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} e^{-(x^2+y^2)} dx \, dy.$$

11. Sketch the *petal curve* given by $r = 3\sin(3\theta)$ in the polar coordinates and find the area of *one leaf* of the region bounded by this curve.