
Project 3 for Math 2605

You may use any language you like to do the programming. Java, C and MATLAB
are good choices, but use whatever you like. Turn in source code with your results. You
may discuss the project with others, but may not copy code or results.

This project concerns the Jacobi algoithm. The idea is to compare the theoretical
bound on how fast it runs with actual practice.

(1) Write a program that does the following:
It should randomly generate a 5 × 5 symmetric matrix A, and should then run the

Jacobi algorithm, producing a sequence of successively “more diagonal” matrices B, and
should stop when

Off(B) =
∑

i6=j

B2
i,j ≤ 10−9

After each partial diagonalization step, record the value of Off(B), generating a (de-
creasing!) sequence of numbers. The program should return this sequence of numbers.

(2) To analyze your data, graph it. If bk denote the value of ln(Off(B)) after the kth
partial diagonalization, we will have the theoretical bound

bk ≤ k ln (9/10) + ln (Off(A)) .

(The value 9/10 comes from 1−2/(n2 −2n) with n = 5). Plot your points (k, bk) together
with a graph of the line

y = x ln (9/10) + ln (Off(A)) .

do this for 10 randomly generated matrices. How does the actual data compare with the
theoretical bound?

(3) The sorting step, in which we look for the largest off diagonal entry is time consuming
for large matrices. What happens if you simply do not bother with this, but just “sweep
through” the upper right entries in a systematic fashion? Implement this, and again
produce graphs for 10 random 5 × 5 matrices comparing practice with this version of the
new “no sorting” algorithm with the old theoretical bound (for the “with sorting” version).
What do you conclude about the importance of sorting versus its expense?

That specifies the project. You can produce the graphs by hand if need be, but try
to get your program to draw the graphs. If you have the experience with java, try making
an applet that does this and produces the graph. Ideally, the applet would also show the
original random matrix, and the five diagonal values at the end of the run, as well as the
graph. It would also be nice to have radio butns to toggle between the “with sorting” and
“no sorting” versions. A nice implementation like this will earn extra credit.

No matter how you do it, write up a report – a few paragraphs – describing what you
did, why, and what you concluded form the comparrisons.

1


