Test 1 for Calculus III for CS Majors, Math 2506 J1-J2, September 23, 2008

## Name:

This test is to be taken without calculators and notes of any sort. The allowed time is 50 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$. State your work clearly, otherwise credit cannot be given.

Problem 1: Consider the function

$$
f(x, y)=x^{2}+y^{2}-4 x y
$$

a) (5 points) Calculate the gradient at the point $(1,1)$.

$$
\nabla f(1,1)=\left[\begin{array}{l}
-2 \\
-2
\end{array}\right]
$$

b) (5 points) Find the line (in parametrized form) that is tangent to the curve $f(x, y)=$ $f(1,1)$ at the point $(1,1)$.

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

c) (5 points) Find the best linear approximation of the function $f(x, y)$ at the point $(1,1)$.

$$
h(x, y)=-2-2(x-1)-2(y-1)
$$

d) (10 points) Find the points on the curve $f(x, y)=f(1,1)$ where the tangent line is horizontal.

$$
\pm \sqrt{\frac{2}{3}}(2,1)
$$

Problem 2: a) (10 points) Calculate the critical points of the function

$$
f(x, y)=2 x^{2}+2 y^{2}+3 x y-4 x-3 y .
$$

b) (10 points) Calculate the Hessian at these critical points.

$$
\left[\begin{array}{ll}
4 & 3 \\
3 & 4
\end{array}\right]
$$

c) (10 points) What are the type of these critical points, are they a maximum a minimum or a saddle?

Minimum

Problem 3: A function $g(x, y)$ with $g(0,0)=0$ has $(0,0)$ as a critical point and the Hessian at this point is given by

$$
\left[\begin{array}{rc}
3 & -2 \\
-2 & 3
\end{array}\right]
$$

a) (5 points )Write the quadratic approximation $q(x, y)$ for the function $g(x, y)$ in the vicinity of this critical point.

$$
q(x, y)=\frac{1}{2}\left(3 x^{2}+3 y^{2}-4 x y\right)
$$

b) (10 points) Find the eigenvalues and the eigenvectors of the Hessian.

Eigenvalue 1 ,Eigenvector $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Eigenvalue 5, Eigenvector $\frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
c) (10 points) Draw in a qualitative fashion a few of the level curves of $q(x, y)$.

Problem 4: (10 points) a) Set up Newton's scheme for solving the equation $x^{2}-y^{2}-1=0$ and $2 x y-1=0$.

$$
\mathbf{x}_{\mathbf{1}}=\mathbf{x}_{\mathbf{0}}-J_{F}\left(\mathbf{x}_{\mathbf{0}}\right)^{-1} \mathbf{F}\left(\mathbf{x}_{\mathbf{0}}\right)
$$

b) (10 points) Use as an initial guess the point $\mathbf{x}_{\mathbf{0}}=(1,0)$ and calculate the next approximation $\mathbf{x}_{\mathbf{1}}$. Check whether this leads to an improvement.

$$
\begin{gathered}
\mathbf{F}\left(\mathbf{x}_{\mathbf{0}}\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \\
J_{F}\left(\mathbf{x}_{\mathbf{0}}\right)=2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
1 / 2
\end{array}\right] \\
\mathbf{F}\left(\mathbf{x}_{\mathbf{0}}\right)=\left[\begin{array}{c}
-1 / 4 \\
0
\end{array}\right] \\
\left|\mathbf{F}\left(\mathbf{x}_{\mathbf{0}}\right)\right|=1 / 4
\end{gathered}
$$

improvement

Extra Credit: (15 points) Given the function $f(x, y)=e^{x} \cos y$ and $g(x, y)=e^{y} \sin y$. What can you say about the angles between lines tangent to the level curves of $f$ resp. $g$ at any point $(x, y)$ ?

$$
\begin{gathered}
\nabla f=\left[\begin{array}{c}
1 e^{x} \cos y \\
-e^{x} \sin y
\end{array}\right] \\
\nabla g=\left[\begin{array}{c}
1 e^{x} \sin y \\
e^{x} \cos y
\end{array}\right] \\
\nabla f \cdot \nabla g=0
\end{gathered}
$$

