MATH 215 - Winter 2005
 SECOND EXAM

Problem 1. $(5+5+10=20$ points) Throughout this problem f is the function

$$
f(x, y)=x y e^{-x-2 y}
$$

(a) Find all critical points of f.
(b) A calculation shows that

$$
f_{x x}=e^{-x-2 y}(-2 y+x y), \quad f_{x y}=e^{-x-2 y}(1-x-2 y+2 x y), \quad f_{y y}=e^{-x-2 y}(-4 x+4 x y)
$$

Using these formulas, classify the critical points of f. You do not have to compute the second partials yourself.

Solution. The partial derivatives are:

$$
f_{x}=e^{-x-2 y}(y-x y), \quad f_{y}=e^{-x-2 y}(x-2 y) .
$$

Since the exponential does not vanish anywhere, the critical points are the solutions to the system

$$
y-x y=0, \quad x-2 y=0
$$

If $y \neq 0$ then the first equation implies that $x=1$. If $y=0$ then x must be zero, by the 2 nd equation. Therefore, the critical points are: $(0,0)$ and $(1,1 / 2)$. The Hessian is

$$
e^{-x-2 y}\left(\begin{array}{cc}
-2 y+x y & 1-2 y-x+2 x y \\
1-2 y-x+2 x y & -4 x+4 x y
\end{array}\right)
$$

At $(0,0)$, the Hessian is

$$
e^{1 / 2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and therefore this point is a saddle point.
At $(1,1 / 2)$, the Hessian is

$$
e^{-2}\left(\begin{array}{cc}
-1 / 2 & 0 \\
0 & -2
\end{array}\right)
$$

and therefore this point is a local maximum.
(c) Find the absolute maximum of the function f on the triangle with vertices at $(0,0),(1,0)$ and $(0,1 / 2)$. Hint: There are not any critical points in the interior of the triangle.

Solution. There are no critical points in the interior of the region. We must check the boundary, which consists of 3 sides. On each of the two sides that lie on the coordinate axes, the function is identically zero.

The third side is defined by:

$$
x+2 y=1, \quad 0 \leq x \leq 1
$$

Restricted to this side the function f becomes the one-variable function

$$
e^{-1}(1-2 y) y
$$

The derivative of this function with respect to y is $(1-4 y) / e$, which is zero at $y=1 / 4$. This corresponds to the point $(1 / 2,1 / 4)$. Since

$$
f(1 / 2,1 / 4)=\frac{1}{8 e}>0
$$

this must be the absolute maximum of the function.
Conclusion: The absolute maximum value of the function on this region is $f(1 / 2,1 / 4)=\frac{1}{8 e}$, and the absolute minimum is zero.

Problem 2. (15 points) Suppose that the temperature in Celsius at the point (x, y, z) of the ellipsoid $4 x^{2}+y^{2}+4 z^{2}=6$ is

$$
T(x, y, z)=2 x+1 y-4 z+600 .
$$

Find the hottest and coldest points on the ellipsoid, and the highest and lowest values of the temperature.

Solution. Using the method of Lagrange multipliers, one is led to the system of equations

$$
2=\lambda 8 x, \quad 1=\lambda 2 y, \quad-4=\lambda 8 z
$$

plus the constraint. The solutions to this system of equations are:

$$
(y=1, \lambda=1 / 2, z=-1, x=1 / 2), \quad \text { and } \quad(z=1, y=-1, \lambda=-1 / 2, x=-1 / 2)
$$

One computes:

$$
T(1 / 2,1,-1)=606, \quad T(-1 / 2,-1,1)=594
$$

Therefore the hottest point is $(1 / 2,1,-1)$ with a temperature of 606 , and the coldest is $(-1 / 2,-1,1)$ with a temperature of 594.
Problem 3. $(10+10=20$ points) This problem consists of two unrelated questions on double integrals.
(a) Evaluate the double integral $\iint_{D} x y^{2} d A$ if D is the region in the half plane $x \geq 0$ bounded by the curves $x=1-y^{2}$ and $x^{2}+y^{2}=1$.

Solution. It is easiest to do the x integral first. Note that in this region the parabola is to the left of the circle, and therefore

$$
\iint_{D} x y^{2} d A=\int_{-1}^{1} \int_{1-y^{2}}^{\sqrt{1-y^{2}}} x y^{2} d x d y=\frac{1}{2} \int_{-1}^{1} y^{2}\left(1-y^{2}-\left(1-y^{2}\right)^{2}\right) d y=\frac{2}{35} .
$$

(b) Change the order of integration in the iterated integral $\int_{0}^{2} \int_{2 x^{3}}^{8 x} f(x, y) d y d x$. (Do not attempt to evaluate the resulting integral.)

Solution.

$$
\int_{0}^{2} \int_{2 x^{3}}^{8 x} f(x, y) d y d x=\int_{0}^{16} \int_{y / 8}^{(y / 2)^{1 / 3}} f(x, y) d x d y
$$

Problem 4. ($8+7=15$ points) This problem is about finding the the Cartesian coordinates (\bar{x}, \bar{y}) of the center of mass of a homogeneous lamina enclosed by the cardioid $r=1-\cos (\theta)$ (see figure).

(a) Find the area of the lamina.
(b) Give the value of \bar{y}, and express \bar{x} in terms of an iterated double integral where the limits of integration are explicitly determined.
Solution. (a) The area is equal to

$$
\iint_{D} d A=\int_{0}^{2 \pi} \int_{0}^{1-\cos (\theta)} r d r d \theta=\frac{1}{2} \int_{0}^{2 \pi}(1-\cos (\theta))^{2} d \theta=\frac{3 \pi}{2}
$$

(b) By symmetry, $\bar{y}=0$, and.

$$
\bar{x}=\frac{2}{3 \pi} \int_{0}^{2 \pi} \int_{0}^{1-\cos (\theta)} r^{2} \cos (\theta) d r d \theta
$$

Problem 5. (15 points) In this problem we use the notation:

$$
I=\iiint_{E} f(x, y, z) d V
$$

where E is the region in the first octant bounded above by the plane $x+2 y+3 z=6$.
Express I as an explicit iterated triple integral of the form $\iiint d z d y d x$. Do not attempt to evaluate the integral. Make sure you specify all the limits of integration.

Solution. The limits of the z integration are: $z \geq 0$ since the region is in the first octant, and, solving for z in the equation of the plane, we get $z \leq 2-x / 3-2 y / 3$. The final answer is:

$$
I=\int_{0}^{6} \int_{0}^{3-x / 2} \int_{0}^{2-x / 3-2 y / 3} f d z d y d x
$$

Problem 6. ($5+10=15$ points) Let E be the region in the first octant in space, inside the sphere $x^{2}+y^{2}+z^{2}=R^{2}$ and above the cone $3 z^{2}=x^{2}+y^{2}$.
(a) Find the equation of the cone in spherical coordinates.
(b) Find the volume of the solid.

Solution. (a) Re-writing the equation of the cone in spherical one gets:

$$
3 \rho^{2} \cos (\phi)^{2}=r^{2}=\rho^{2} \sin (\phi)^{2}
$$

This implies that $3 \cos (\phi)^{2}=1-\cos (\phi)^{2}$ or $\cos (\phi)= \pm 1 / 2$. Since ϕ is between 0 and π, the final answer is:

$$
\phi=\frac{\pi}{3} .
$$

(b) By part (a), the range of ϕ is $0 \leq \phi \leq \pi / 3$ (the region is above the cone), Since the region is inside the sphere and above the cone, and in the 1st octant

$$
0 \leq \rho \leq R, \quad 0 \leq \theta \leq \pi / 2
$$

and the volume is

$$
\begin{gathered}
V=\int_{0}^{\pi / 2} \int_{0}^{\pi / 3} \int_{0}^{R} \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
=\frac{\pi R^{3}}{6} \int_{0}^{\pi / 3} \sin (\phi) d \phi=\frac{\pi R^{3}}{6}(1-1 / 2)=\frac{\pi R^{3}}{12}
\end{gathered}
$$

