Test 2 for Calculus III for CS Majors, Math 2506 J1-J2, October 21, 2008

Name:

This test is to be taken without calculators and notes of any sort. The allowed time is 50 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$. State your work clearly, otherwise credit cannot be given.

Problem 1: Consider the function

$$
f(x, y)=x^{2}-6 x y+y^{2}
$$

a) (10 points) Find the critical points of $f(x, y)$ inside the domain $x^{2}+y^{2}<1$ and determine their type, i.e., a local minimum, local maximum or saddle.

$$
\nabla f=\left[\begin{array}{l}
2 x-6 y \\
2 y-6 x
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

yields $(0,0)$ as the only critical point.
The Hessian is

$$
H_{f}(x, y)=\left[\begin{array}{cc}
2 & -6 \\
-6 & 2
\end{array}\right]
$$

Its determinant is negative and hence the critical point is a saddle.
b) (10 points) Find the maximum and minimum of the function $f(x, y)$ on the boundary, i.e., subject to the constraint $x^{2}+y^{2}-1=0$.

Using Lagrange multiplier we have to solve the equations

$$
\left[\begin{array}{l}
2 x-6 y \\
2 y-6 x
\end{array}\right]=\lambda\left[\begin{array}{l}
2 x \\
2 y
\end{array}\right]
$$

and $x^{2}+y^{2}=1$. Cross multiplication yields

$$
x y-3 y^{2}=x y-3 x^{2}
$$

or $x^{2}=y^{2}$ and the solutions are

$$
\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),-\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)
$$

c) (5 points) Find the maximum and minimum of the function $f(x, y)$ in the region $x^{2}+y^{2} \leq$ 1. The ones with opposite signs yield max with max value 4 and the ones with equal sign yield min with min value -2 . The critical point in the interior is neither a local max nor local min and hence is not included in the list of candidates for max and min.

Problem 2: Consider the matrix

$$
A=\left[\begin{array}{rrr}
6 & 0 & 3 \\
0 & 3 & 1 \\
3 & 1 & -2
\end{array}\right]
$$

a) (5 points) Compute $\operatorname{Off}(A)$.

20

b) (10 points) Calculate the Givens matrix G for the first step in the Jacobi iteration for diagonalizing A by picking the 2×2 submatrix with the largest off diagonal elements. (You do not have to calculate $G^{T} A G$.)

$$
\frac{1}{\sqrt{10}}\left[\begin{array}{ccc}
3 & 0 & 1 \\
0 & \sqrt{10} & 0 \\
1 & 0 & -3
\end{array}\right]
$$

Another possibility is

$$
\frac{1}{\sqrt{10}}\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & \sqrt{10} & 0 \\
-3 & 0 & 1
\end{array}\right]
$$

c) (10 points) Calculate $\operatorname{Off}\left(G^{T} A G\right)$.

Problem 3: (10 points) a) Find the singular value decomposition of the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
2 & -2 \\
1 & -1 \\
2 & -2
\end{array}\right] . \\
V=\frac{1}{3}\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right] \\
D=3 \sqrt{2} \\
U=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{gathered}
$$

Assume that

$$
V=\frac{1}{3}\left[\begin{array}{rr}
1 & 2 \\
-2 & 2 \\
2 & 1
\end{array}\right], D=\left[\begin{array}{cc}
6 \sqrt{2} & 0 \\
0 & 3 \sqrt{2}
\end{array}\right], U=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]
$$

form the singular decomposition of a matrix B.
b) (10 points) Calculate the generalized inverse B^{+}

$$
A^{+}=U D^{-1} V^{T}=\frac{1}{36}\left[\begin{array}{ccc}
-3 & -6 & 0 \\
5 & 2 & 4
\end{array}\right]
$$

c) (5 points) Find the least square solution of the problem $B x=b$ where

$$
\begin{gathered}
b=\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right] \\
A^{+} b=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{gathered}
$$

Problem 4: a) (10 points) Diagonalize the matrix

$$
\begin{gathered}
A=\left[\begin{array}{rr}
1 & 4 \\
1 & -2
\end{array}\right] \\
A=\left[\begin{array}{cc}
4 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right] \frac{1}{5}\left[\begin{array}{cc}
1 & 1 \\
-1 & 4
\end{array}\right]
\end{gathered}
$$

b) (10 points) Find a Schur factorization of the matrix A.

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
-3 & -3 \\
0 & 2
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]
$$

c) (5 points) What is the Schur factorization of A^{2} ?

$$
\begin{aligned}
A^{2}= & \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]\left(\left[\begin{array}{cc}
-3 & -3 \\
0 & 2
\end{array}\right]\right)^{2} \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
9 & 3 \\
0 & 4
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

Extra Credit: (10 points) Find the Householder reflection that maps the vector \mathbf{x} to the vector \mathbf{y} where

$$
\begin{gathered}
\mathbf{x}=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right], \mathbf{y}=\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right] . \\
H=\frac{1}{5}\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & -4 & 3 \\
0 & 3 & 4
\end{array}\right]
\end{gathered}
$$

