- 1. Given a matrix A, describe how the sequence $A^{(k)}$ is created via QR iteration.
- 2. Suppose A is a real square matrix with real eigenvalues. Give a criterion for the sequence $A^{(k)}$ to converge to an upper-triangular matrix.
- 3. Prove that an eigenvector of A is an eigenvector of A + aI for any a. What is the "eigenvalue shifting" procedure?
- 4. Let Q be a unitary transformation obtained in the k-th step of the Schur factorization algorithm: for a $k \times k$ matrix B it is such that Q^*BQ has a multiple of \mathbf{e}_1 in the first column.

How does one use Q to create a unitary transformation in the *n*-dimensional space? How is the latter used to update the output unitary matrix U?

Upon termination the algorithm produces a Schur decomposition $A = UTU^*$, where T can be computed as the following product of matrices: U^*AU .

How would you modify the algorithm to produce T without computing this product at the end?

5. Prove that if (A-aI) is an invertible matrix then $(A-aI)^{-1}$ has the same eigenvalues as A.

How is this fact used to speed up the QR iterations if a rough approximation a of an eigenvalue μ is known?

- 6. CAR: Chapter 4: p.1-41: 1.
- 7. Give a definition of e^A for a square matrix A. Given a Schur decomposition $A = UTU^*$ rewrite e^A in terms of e^T .
- 8. CAR: Chapter 4: p.1-50: 2.
- 9. Given a second order ODE with constant coefficients, what is a way to phrase the problem as a system of two first order ODEs?
- 10. CAR: Chapter 5: p.1-50: 5.