1. Given a matrix A, describe how the sequence $A^{(k)}$ is created via QR iteration.
2. Suppose A is a real square matrix with real eigenvalues. Give a criterion for the sequence $A^{(k)}$ to converge to an upper-triangular matrix.
3. Prove that an eigenvector of A is an eigenvector of $A+a I$ for any a. What is the "eigenvalue shifting" procedure?
4. Let Q be a unitary transformation obtained in the k-th step of the Schur factorization algorithm: for a $k \times k$ matrix B it is such that $Q^{*} B Q$ has a multiple of \mathbf{e}_{1} in the first column.
How does one use Q to create a unitary transformation in the n-dimensional space? How is the latter used to update the output unitary matrix U ?

Upon termination the algorithm produces a Schur decomposition $A=U T U^{*}$, where T can be computed as the following product of matrices: $U^{*} A U$.
How would you modify the algorithm to produce T without computing this product at the end?
5. Prove that if $(A-a I)$ is an invertible matrix then $(A-a I)^{-1}$ has the same eigenvalues as A.

How is this fact used to speed up the QR iterations if a rough approximation a of an eigenvalue μ is known?
6. CAR: Chapter 4: p.1-41: 1.
7. Give a definition of e^{A} for a square matrix A. Given a Schur decomposition $A=$ $U T U^{*}$ rewrite e^{A} in terms of e^{T}.
8. CAR: Chapter 4: p.1-50: 2.
9. Given a second order ODE with constant coefficients, what is a way to phrase the problem as a system of two first order ODEs?
10. CAR: Chapter 5: p.1-50: 5.

