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2.1. Polynomial homotopy

In this chapter we consider C[x] = C[x1, . . . , xn], polynomials with complex
coefficients. Moreover, we restrict ourselves to a square polynomial systems, F =
(f1, . . . , fn) ∈ C[x]n, that are 0-dimensional, i.e., V(F ) is finite.

The main idea behind solving the system F is to use the homotopy

(2.1.1) Ht = (1− t)G+ tF ∈ C[x]n, t ∈ [0, 1],

that connects a start system G = H0 with the target system F = H1. Now we need
to create a start system G such that

• solutions of G are readily available;
• as the continuation parameter t varies from 0 to 1 we get a smooth paths

that lead from solutions of G to solutions of F .

2.1.1. Constructing a start system. The following start system results in
the so-called total-degree homotopy:

(2.1.2) G =
(
xd11 − 1, . . . , xdn

n − 1
)
,

where di = deg fi for i ∈ [n]. The number of solutions equals the total degree of
the system, |V(G)| = d1 · · · dn. Indeed, the i-th coordinate of a solution is the di-th
root of unity.

Example 2.1.1. For the target system

F =
(
x3

2 − 6x2
1 − 2x1x2 + 5x2

2 + 2x1

x2
1 + x2

2 − 2

)
the total-degree start system is

G =
(
x3

1 − 1
x2

2 − 1

)
and the start solutions are{(

−1
2

+
√

3
2

i, 1

)
,

(
−1

2
−
√

3
2

i, 1

)
, (1, 1) ,(

−1
2

+
√

3
2

i,−1

)
,

(
−1

2
−
√

3
2

i,−1

)
, (1,−1)

}
.

Exercise 2.1.2. Show that all points V(G) for G in (2.1.2) are regular.

Once the homotopy Ht and start solutions are set up, we follow the homotopy
paths initiating at the start solutions (at t = 0) in hope of getting target solutions
at (t = 1). A homotopy path, x(t) ∈ Cn, can be tracked numerically using the
so-called predictor-corrector technique. Suppose an approximation x̃0 ≈ x(t0) of a
solution to Ht0 is available for some t0 ∈ [0, 1] and suppose we are looking to find
an approximation x̃1 ≈ x(t1) of a solution to Ht1 for some t1 > t0. Two steps are
performed: the predictor makes a rough approximation of x(t1), then the corrector
refines predictor’s approximation.



2.1. POLYNOMIAL HOMOTOPY 15

2.1.2. Homotopy path tracking: predictor step. DifferentiatingHt(x(t)) =
0 with respect to t we get(

∂Ht

∂x
x′(t) +

∂Ht

∂t

)
x=x(t)

= 0,

solving which for the derivative of the homotopy path x(t) gives the following at
the point x0 = x(t0) of the path

(2.1.3) x′(t0) = c(x0, t0) =

((
∂Ht

∂x

)−1
∂Ht

∂t

)
x=x0,t=t0

.

This is a system of ordinary differential equations (ODEs) that can be integrated
numerically using an arbitrary numerical integration scheme. We are, however,
interested only in one step of a numerical integration procedure and list several
popular choices here.

Order 0: This method makes the simplest prediction possible,

x̃1 = x̃0,

not using the ODEs (2.1.3) at all and, in particular, not depending on
∆t = t1 − t0. As a global numerical integration scheme it is not very
useful, but in our case the following corrector step makes even such a
simple predictor step meaningful.

Order 1: The tangent predictor goes along the tangent line to the path:

x̃1 = x̃0 + c(x̃0, t0)∆t,

where the coefficient c is an approximation to x′(t0) derived by plugging
in x = x̃0 and t = t0 in (2.1.3).

Order 2: The Euler predictor operates as follows:

x̃1 = x̃0 +
c(t0, x̃0) + c (x̃0 + c(t0, x̃0)∆t, t0)

2
∆t.

Note that this formula involves a part that is an exact copy of the tangent
method.

Order m: In general, one can construct an integration scheme of an arbitrary order
m. We skip the formal definition of the concept of order. Roughly speak-
ing, a scheme is of order m if the error of approximatican be bounded
from above as a constant multiple of |∆t|m+1 as ∆t→ 0.

The higher the order, the more accuracy is expected. On the other
hand, the higher order methods typically are more involved in comparison
to the lower order methods as demonstrated by the schemes of orders 0,1,
and 2 above.

One of the most popular techniques is the classical Runge-Kutta method,
which is or order 4.

2.1.3. Homotopy path tracking: correction step. One can extend Newton’s
method discussed in §1.1.2 to the multivariate setting. Let F be a square polyno-
mial system of size n and assume one has an approximation x̃0 of an exact solution
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x∗ ∈ Cn. Then it can be refined by Newton’s operator

NF :
{
x ∈ Cn | det(

∂F

∂x
)(x) 6= 0

}
→ Cn,

NF (x) = x−
(
∂F

∂x
(x)
)−1

F (x).

using Algorithm 1.1.1 almost word for word.
As long as the solution x∗ is regular, which in case of a square system is equiv-

alent to nonvanishing of the determinant of the Jacobian matrix ∂F
∂x (x∗), Newton’s

method converges quadratically. This, roughly speaking, means that the accuracy
of the approximation (the number of correct digits) doubles at every step. We leave
the exact definition of quadratic convergence to §2.3.

Exercise 2.1.3. Design an algorithm

(1) x̃ = corrector(H,x0, t) that takes a homotopy H, an approximation x
to a solution of the system F = Ht for a given t and outputs NF (x0).

(2) x̃ = predictor(H, x̃t−∆t, t,∆t) that takes
• a homotopy H,
• an approximation x̃t−∆t to a solution of Ht−∆t

• for a given t
• and the step size ∆t

and outputs the prediction for a solution of Ht using Euler’s method.

2.1.4. Heuristic homotopy tracking. The word heuristic suggests that the
algorithms described below terminate and produce a correct output for a large
number of inputs and parameter settings, however, they do not provide a guarantee
of neither termination nor correctness.

The most näıve algorithm of tracking a homotopy path is the following.

Algorithm 2.1.1 x̃1 = naiveHomotopyTracking(H, x̃0, N)

Require: H = Ht, a polynomial homotopy as in 2.1.1;
x̃0 ∈ k, an approximation to a solution of H0;
N , the number of steps taken on the homotopy path;

Ensure: x̃1, an approximation of a solution of H1.
∆t← 1

N
for t = ∆t to 1 with step ∆t do
x̂t ← predictor(H, x̃t−∆t, t,∆t)
x̃t ← corrector(H, x̂t, t)

end for

The hope is that for a large enough value of N the näıve algorithm does not
deviate from the homotopy path. A more sophisticated approach adjusts the size
of the step in accordance with the “difficulty” of prediction and correction. Algo-
rithm 2.1.2 presents one popular approach.
Note: The existing practical implementations of the heuristic homotopy tracking al-

gorithms take even more parameters than trackHomotopy in Algorithm 2.1.2. For

instance, see the function track of NumericalAlgebraicGeometry package of Macaulay2.
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Algorithm 2.1.2 x̃1 = trackHomotopy(H, x̃0,∆t0, c, δ,maxcorr)

Require: H = Ht, a polynomial homotopy as in 2.1.1;
x̃0 ∈ k, an approximation to a solution of H0;
∆t0, an initial step size;
c, the step increase factor;
δ, the backward error tolerance;
maxcorr, the maximal number of corrections;

Ensure: x̃1, an approximation of a solution of H1.
x̃← x̃0, t← 0
repeat

repeat
if t+ ∆t > 1 then

∆t = 1− t
end if
x̃′ ← predictor(H, x̃, t,∆t)
success← false, i← 0
while not success and i < maxcorr do
x̃′′ ← corrector(H, x̃′, t)
if |x̃′′ − x̃′| < δ then
success← true

end if
x̃′ ← x̃′′, i← i+ 1

end while
if success then

∆t← min(c∆t, 1− t) -- increase the step size
else

∆t← c−1∆t -- decrease the step size
end if

until success
t← t+ ∆t, x̃← x̃′

until t = 1
x̃1 ← x̃

Suppose the homotopy path x(t) is smooth at every point perhaps with an
exception of t = 1, i.e.,

det
(
∂Ht

∂x
(x(t))

)
6= 0, t ∈ [0, 1).

Above Algorithms 2.1.1 and 2.1.2, in fact, terminate and produce correct results
for a sufficiently close approximation x̃0 of x(0), and sufficiently large N and ∆t0,
respectively. However, it is practically impossible to determine the sufficient values
of the parameters in the general case.

2.1.5. Randomization and γ-trick. For a path x(t) containing a singular
point, i.e., a singular solution x∗ = x(t∗) of the system Ht∗ for some t∗ ∈ [0, 1),
all numerical homotopy tracking algorithms are likely to fail: the corrector step
becomes ill-conditioned close to x∗, since the Jacobian matrix is not invertible at
x∗.
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Note: A good indicator of how close to singularity in the condition number of the Jacobian
of Ht∗ at the current approximation of x(t∗).

For a regular n× n matrix A the condition number is defined as

κ(A) = ‖A‖ ‖A−1‖, ‖A‖ = max
x∈Cn\{0}

‖Ax‖
‖x‖ .

The larger is κ(A), the less reliable is a numerical approximate solution of a linear system

Ax = b.

Exercise 2.1.4. Consider a homotopy

(2.1.4) Ht(x) = (1− t)G(x) + γtF (x).

Let G = x2 − 1 and F = x2 + 2x − 3. Find all γ ∈ C such that there exists t ∈ R
with a singular solution x to Ht.

Exercise 2.1.4 suggests a way to avoid such singularities replacing a homotopy
of (2.1.1) with that of (2.1.4) picking the value of γ ∈ C at random. This is known
as the γ-trick.
Note: In practice, γ is picked on the unit circle in the complex plane with uniform

distribution.

The following result allows us to compute all solutions of the target system via
homotopy continuation.

Theorem 2.1.5. Let F be a 0-dimensional square polynomial system.
Then for the homotopy (2.1.4) using the total-degree start system G and a

generic γ ∈ C
(1) for every start solution x0 ∈ V(G) the homotopy path x(t) starting at

x0 = x(0) is regular for t ∈ [0, 1);
(2) every target solution x1 ∈ V(F ) is at the end of some homotopy path x(t),

i.e., x1 = x(1).

Proof.
�� ��add a reference �

Corollary 2.1.6 (Bézout bound). Let F = (f1, . . . , fn) with fi ∈ C[x1, . . . , xn]
of degree di for i = 1, . . . , n be a 0-dimensional polynomial system.

Then |V(F )| ≤ d1 · · · dn.

2.1.6. Non-square systems. Consider a 0-dimensional overdetermined sys-
tem

F =

 f1

. . .
fm

 ∈ C[x1, . . . , xn]m, m > n.

We shall describe two ways of squaring-up an overdetermined system.
Take a matrix A ∈ Cn×m and consider the square system AF ∈ C[x]n. Since

the polynomials of AF are linear combinations of fi,

V(F ) ⊆ V(AF ).

Proposition 2.1.7. For a 0-dimensional system F and a generic A as above,
the system AF is 0-dimensional.

Proof. See Exercise 2.1.10 �

Note: If solution x∗ ∈ V(F ) is regular with respect to F , then it is regular with respect

to AF in Proposition 2.1.7.



2.1. POLYNOMIAL HOMOTOPY 19

Exercise 2.1.8. Construct an example of an overdetermined 0-dimensional
system F in n variables such that every subset of n polynomials in F forms a
positive-dimensional system.

Proposition 2.1.7 suggests a simple method of finding V(F ):
(1) pick a random A;
(2) find V(AF ) for the square system AF ;
(3) V(F ) = {x ∈ V(AF ) |F (x) = 0 }, which amounts to a finite number of

checks for polynomial vanishing.
An alternative to the method above is to introduce the so-called slack variables

Y = (y1, . . . , ym−n)T . For a matrix A ∈ Cm×(m−n), consider the square system

F +AY ∈ C[x, y]m.

We readily observe that solutions of F extend to solutions of F +AY by appending
zeros for y-coordinates.

V(F +AY ) ⊇ { (x, 0) ∈ Cm |x ∈ V(F ) } .

Proposition 2.1.9. For a 0-dimensional system F and a generic A as above,
the system F +AY is 0-dimensional and

{ (x, y) ∈ V(F +AY ) | y = 0 } = { (x, 0) ∈ Cm |x ∈ V(F ) } .

Proof.
�� ��add a reference �

Exercise 2.1.10. Prove Proposition 2.1.7 by reducing to Proposition 2.1.9.

2.1.7. Eigenvalue problem via homotopy continuation. The following
problem is central in linear algebra; here we use numerical homotopy continuation
technique to solve it approximately.

Problem 2.1.11. Given A ∈ Cn×n find the eigenvalues and eigenvectors of A.

Consider the case n = 2; the approach outlined here works for all n. Let

A =
[
a11 a12

a21 a22

]
, v =

[
x1

x2

]
.

There are three unknowns in the eigenproblem: the eigenvalue λ and the coordinates
of the vector v. We seek solutions of the system

(Av − λv) =
(
a11x1 + a12x2 − λx1

a21x1 + a22x2 − λx2

)
.

This is a system of two quadratic polynomials in C[λ, x1, x2]. The system is positive-
dimensional: there are fewer equations than unknowns. Indeed, if v is an eigenvec-
tor, then there is the whole line of solutions corresponding to Span (v).

Exercise 2.1.12. For the 2×2 matrix A find a condition (involving the entries
aij) that ensures that the characteristic polynomial of A has a double root.

Augment the system with one linear equation:

F =

 a11x1 + a12x2 − λx1

a21x1 + a22x2 − λx2

b1x1 + b2x2 + 1

 .
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Assume that the eigenspaces of A are one-dimensional (this is the case, in particular,
when the eigenvalues are not repeated; cf. Exercise 2.1.12). If b1, b2 ∈ C are generic,
the last equation in the system picks out one nonzero vector in each eigenspace.
We conclude that F is a 0-dimensional system generically, since a randomly picked
matrix has distinct eigenvalues.

Now if we solve the system F , consisting of two quadratic and one linear poly-
nomials, using the total-degree homotopy, we would have to track 4(= 2 · 2 · 1)
paths. However, |V(F )| = 2, meaning that this homotopy is not optimal.

Instead, let us take a start system that arises from the eigenproblem that we
know a solution to: take a diagonal matrix D with distinct entries on the diagonal,

D =
[
d1 0
0 d2

]
, d1 6= d2

In a similar way as above we translate D into the 0-dimensional system

(2.1.5) G = (Dv − λv) =

 d1x1 − λx1

d2x2 − λx2

b1x1 + b2x2 + 1

 .

The two start points (λ, x1, x2) ∈ V(G) are (d1,
−1
b1
, 0) and (d2, 0, −1

b2
).

Exercise 2.1.13. Show that the solutions of the system G in (2.1.5) are regular
(for generic b1 and b2).

The homotopy connecting G to F is

Ht = (1− t)G+ tF =
(

(tD + (1− t)A) v − λv
b1x1 + b2x2 + 1

)
(2.1.6)

=

 ((1− t)d1 + ta11) x1 + ta12 x2 − λx1

ta21 x1 + ((1− t)d2 + ta22) x2 − λx2

b1 x1 + b2 x2 + 1

 .

For all t ∈ [0, 1] the system Ht represents the eigenproblem for the matrix

(2.1.7) Mt = (1− t)D + tA.

For almost all choices of the entries d1 and d2 of D, the eigenvalues of Mt are
distinct and the solutions V(Ht) are regular for all t ∈ [0, 1).

Exercise 2.1.14. Consider the homotopy Mt in (2.1.7) for

A =
[
0 1
1 0

]
and D =

[
γ 0
0 0

]
, γ ∈ C

Find the locus of values of γ that produce Mt with a repeated eigenvalue (see Exer-
cise 2.1.12) for some t ∈ R.
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2.2. Singular solutions

The γ-trick of §2.1.5 makes sure the homotopy Ht is such that the points of
the variety V(Ht) are regular for all t ∈ [0, 1). This guarantees fast convergence
of the corrector step at every point of the path with the possible exception at the
very end.

This section discusses ways to detect singular solutions and regularize the sys-
tem F = H1, therefore restoring the quadratic convergence of Newton’s method.

2.2.1. Path clustering. We say that a solution x∗ ∈ V(F ) is isolated if there
is a neighborhood of x∗ containing no other solution. If F is 0-dimensional then all
its solutions are isolated.

Define path multiplicity of x∗ ∈ V(F ) relative to homotopy Ht with H1 = F to
be the number of homotopy paths x(t) with x(1) = x∗.

Theorem 2.2.1. Let F be a 0-dimensional square polynomial system.
Then the path multiplicity of x∗ ∈ V(F ) relative to a total-degree homotopy

(2.1.4) for a generic γ ∈ C is the same.

We will denote this generic multiplicity by µ = µ(x∗).
Note: If x(1)(t), . . . , x(µ)(t) are the homotopy paths converging to x∗ as t → 1, their
centroid

xc(t) =
x(1)(t) + · · ·+ x(µ)(t)

µ

converges to x∗ asymptotically faster.

This fact can be used in practical computation.

2.2.2. Deflation. First, let us consider the univariate case: suppose f ∈ C[x]
has a multiple root x∗. Then f = (x−x∗)µg for some µ > 1 where g is not divisible
by x− x∗.

Differentiating f we get

f ′ = µ(x− x∗)µ−1g + (x− x∗)µg′ = (x− x∗)µ−1(µg + (x− x∗)g′).

Since µg + (x− x∗)g′ does not have x∗ as a root, we conclude that f ′ has x∗ as a
root with multiplicity µ− 1.

As was mentioned in Chapter 1, Newton’s method converges much slower
around a multiple root. One way to restore the fast quadratic convergence is to
approximate x∗ as a root of f (µ−1).

However, in practice, the multiplicity µ may be unknown. Suppose we have
a modified Newton subroutine that gives up if the convergence is (heuristically)
deemed to be slow.

Algorithm 2.2.1 (x̃, fast) = NewtonFast(f, x0, δ)

Require: f ∈ k[x], a polynomial;
x0 ∈ k, an initial approximation;
δ, the desired absolute error tolerance;

Ensure: either fast = true (convergence is quadratic) and x̃ is an approximate
root with backward error estimated to be at most δ
or fast = false (convergence is not quadratic) and x̃ is a possibly finer approxi-
mation with no estimate on the error.
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Then it is possible to design a heuristic regularization algorithm that takes one
derivative at a time.

Algorithm 2.2.2 x̃ = univariateDeflation(f, x0, δ)

Require: f ∈ k[x], a polynomial;
x0 ∈ k, an initial approximation to a root of f ;
δ, the absolute error tolerance;

Ensure: x̃ is an approximate root with backward error estimated to be at most δ.

x̃← x0

repeat
(x̃, fast) = NewtonFast(f, x̃, δ)
if not fast then
f ← f ′

end if
until fast

Now suppose we have a system of equations F = (f1, . . . , fm) of multivariate
polynomials fi ∈ C[x] = C[x1, . . . , xn] with an isolated solution x∗. This implies
m ≥ n.

If x∗ is singular, then the Jacobian J = ∂F
∂x (x∗) is rank deficient and has a

nonzero kernel. That means that

r = rank J < n and
c = corank J = n− r = dim kerJ > 0.

Pick a generic constant matrix A = (aij) ∈ Cc×n and consider the following aug-
mented system of polynomials in C[x, λ] = C[x1, . . . , xn, λ1, . . . , λn] :

(2.2.1)



F

∂F
∂x λ

Aλ+

1
...
1




=



f1

...
fn

∂f1
∂x1

λ1 + · · ·+ ∂f1
∂xn

λn
...

∂fm

∂x1
λ1 + · · ·+ ∂fm

∂xn
λn

a11λ1 + · · ·+ a1nλn + 1
...

ac1λ1 + · · ·+ acnλn + 1


The three blocks of polynomials in the system correspond to

(1) the original equations;
(2) equations that place the column vector of indeterminates λ in the kernel

of the Jacobian;
(3) equations that describe a random r-plane (of dimension r = n− c) in the

space of parameters λ (of dimension n).
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Proposition 2.2.2. For a generic choice of A the system (2.2.1) has an iso-
lated solution (x∗, λ∗) ∈ C2n for some λ∗ ∈ Cn.

Proof. Set x = x∗, then the second block of equations in the augmented
system describes K = ker J , where J = ∂F

∂x (x∗). Intersecting K, which is of
dimension c = n− r, with a random r-plane cut out by the third block we get one
point λ∗.

This leads to the conclusion that the (x∗, λ∗) solves the augmented system and
is isolated. �

Taking a closer look at the system (2.2.1) one may notice that c parameters
can be easily eliminated using the third block of equations. Alternatively, one
can reformulate the augmentation procedure: take a generic constant matrix B ∈
Cn×(r+1) and consider the system

(2.2.2) DBF =


F

∂F
∂x B


λ1

...
λr
1



 ∈ C[x, λ]2m,

where C[x, λ] = [x1, . . . , xn, λ1, . . . , λr]. Note that the deflation procedure, denoted
by D (we write DB if the choice of a generic matrix B needs to be emphasized),
produces DF , a system of m equations in n+ r unknowns, while the system (2.2.1)
has 2m+ c equations in 2n unknowns.

Exercise 2.2.3. Consider the system

F =
(
x2

1 − x4
2

x2
1 − x6

2

)
.

(1) Show that the origin x∗ = (0, 0) is a singular isolated solution of F .
(2) Find the rank r of the Jacobian at x∗.
(3) Construct the deflated system DF = DBF picking entries of B to be

nonzero integers.
(4) Is the lifted solution (x∗, λ∗) ∈ V(DF ) regular?

Proposition 2.2.4. For a generic choice of B the system (2.2.2) has an iso-
lated solution (x∗, λ∗) ∈ Cn+r for some λ∗ ∈ Cr.

Proof. The argument is similar to that of Proposition 2.2.2.
Note that B(λ, 1)T parametrizes an r-plane and the the second block of equa-

tions in 2.2.2 implies that (x∗, λ) ∈ V(DF ) iff

B

[
λ
1

]
∈ ker J, J =

∂F

∂x
(x∗).

There is a unique point λ∗ in the intersection of the (n− r)-dimensional kernel
and a generic r-plane, which leads to the conclusion. �

The following algorithm can be seen as a generalization of Algorithm 2.2.2 to
the multivariate setting. It relies on two subroutines:

• a multivariate generalization of NewtonFast(F, x0, δ), which implements
the multivariate Newton’s method as in §2.1.3 (if given an overdetermined
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system F , Newton’s method is applied to a square system formed using
one of the approaches in §2.1.6);

• a heuristic function numericalRank(Ã), which given an approximation
Ã of a matrix A attempts to recover the (exact) rank of A.

Algorithm 2.2.3 x̃ = deflation(F, x0, δ)

Require: F ∈ C[x]m, a polynomial system;
x0 ∈ Cn, an initial approximation to an isolated solution of F ;
δ, the absolute error tolerance;

Ensure: x̃ is an approximate solution with the estimated backward error at most δ.

(x̃, fast)← NewtonFast(F, x0, δ)
if not fast then

J ← ∂F

∂x
(x̃)

r ← numericalRank(J)
B ← a random n× (r + 1) matrix

λ̃← the least-squares approximate solution of JB
[
λ
1

]
= 0

x̃← the first n coordinates of deflation(DBF, (x̃, λ̃), δ)
end if

Unlike in the univariate case it is not clear whether the recursion in deflation
terminates. In fact, one can define an intrinsic notion of multiplicity of an isolated
solution ν(x∗), such that ν(x∗) = 1 iff x∗ is regular, and prove that it decreases
when deflation is applied.

Theorem 2.2.5. Let x∗ ∈ V(F ) be an isolated solution of a polynomial system
F and (x∗, λ∗) ∈ V(DF ) be the corresponding solution of the deflated system DF .

Then ν(x∗, λ∗) < ν(x∗).

Proof.
�� ��add a reference �

Corollary 2.2.6. Algorithm 2.2.3 terminates.

Example 2.2.7. Consider

F =

 x3
1 − x2

2

x1x
2
2

x3
2

 .

This system has one solution, x∗ = (0, 0). However, x∗ is singular:

∂F

∂x
=

3x2
1 −2x2

x2
2 2x1x2

0 3x2
2

 , ∂F

∂x
(x∗) = 0, r = 0, c = 2.
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The first deflation step is not using any new variables: take a generic B1 ∈ C2×1,

for this example B1 =
[
1
1

]
works, then

DB1F =

 F

∂F
∂x

[
1
1

] [
1
]  =


x3

1 − x2
2

x1x
2
2

x3
2

3x2
1 − 2x2

x2
2 + 2x1x2

3x2
2

 ∈ C[x1, x2]6.

However, x∗ is singular for this system as well:

∂F

∂x
=


3x2

1 −2x2

x2
2 2x1x2

0 3x2
2

6x1 −2
2x2 2(x2 + x1)
0 6x2

 ,
∂F

∂x
(x∗) =


0 0
0 0
0 0
0 −2
0 0
0 0

 , r = 1, c = 1.

In the second deflation step we take a generic B2 ∈ C2×2, here B2 =
[
0 1
1 0

]
works,

to construct

DB2DB1F =

 F
∂(DB1F )

∂x

[
1
λ1

]  =



x3
1 − x2

2

x1x
2
2

x3
2

3x2
1 − 2x2

x2
2 + 2x1x2

3x2
2

3x2
1 − 2x2λ1

x2
2 + 2x1x2λ1

3x2
2λ1

6x1 − 2λ1

2x2 + 2(x2 + x1)λ1

6x2λ1



∈ C[x1, x2, λ1]12.

The above system has one solution (x∗, λ∗) = (0, 0, 0) that is regular, checking which
we leave as an exercise.

Note: In practice, to avoid doubling the number of equations at each deflation step, one

may want to square-up the deflated after each deflation: use the first approach of §2.1.6.

Exercise 2.2.8. For the system F of Exercise 2.2.3 construct a sequence of s
deflations picking matrices B1, . . . , Bs (take s to be as large as needed) such that
the resulting system DBs

· · ·DB1F has a regular solution projecting to the origin.
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2.3. Certification

In this section we go back to the analysis of Newton’s method and outline
the cornerstone results of Smale’s alpha theory. These can be used to show that
heuristically obtained approximate solutions are certifiably correct.

2.3.1. Approximate zeros. Let F ∈ C[x]n be a square system of polynomi-
als. For m ∈ N, let

Nm
F (x) := NF ◦ · · · ◦NF (x)︸ ︷︷ ︸

m times
be the mth Newton iteration of F starting at x. Let ‖ · ‖ be the hermitian norm on
Cn:

‖(x1, . . . , xn)‖ = (|x1|2 + · · ·+ |xn|2)1/2.

A point x is a approximate zero of F with the associated zero x∗ ∈ V(F ) if

(2.3.1) ‖Nm
F (x)− x∗‖ ≤

(
1
2

)2m−1

‖x− x∗‖,

for every m ∈ N. In other words, the sequence {Nm
F (x) | m ∈ N} converges

quadratically to x∗.

2.3.2. Smale’s α-theorem. Smale’s α-theory provides sufficient conditions
for a given point x to be a approximate zero of F . It operates with the numbers
α(F, x), β(F, x), and γ(F, x) that are defined if the Jacobian J(x) = ∂F

∂x (x) is
invertible:

β(F, x) = ‖x−NF (x)‖ = ‖J(x)−1F (x)‖
was used before as the absolute backward error estimator,

γ(F, x) = sup
m≥2

∥∥∥∥∥J(x)−1 ∂mF
∂xm (x)
m!

∥∥∥∥∥
1

m−1

,

and
α(F, x) = β(F, x)γ(F, x).

Note: Beyond the univariate case, the higher-order derivatives of F and the norm used

in the definition of γ have highly nontrivial descriptions.
�� ��add a reference

Nevertheless, these are computable. So is γ, since the supremum is taken over a finite

number of values m: the derivatives of order higher than the order of polynomials vanish.

Theorem 2.3.1. The point x ∈ Cn with

(2.3.2) α(F, x) <
13− 3

√
17

4
≈ 0.157671

is a approximate zero of F . Moreover, ‖x− x∗‖ ≤ 2β(F, x) where x∗ ∈ V(F ) is the
associated zero for x.

Proof.
�� ��add a reference �

Exercise 2.3.2. For a polynomial f = x2−2x+3 determine whether the point
x passes the α-test (2.3.2) for

(1) x = 1;
(2) x = 1 + i;
(3) x = 1 + 3

2i.
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If so, what is the associated zero of the point?

Theorem 2.3.3. Let x ∈ Cn with α(F, x) < 0.03 and x∗ ∈ V(f) the associated
zero for x. If y ∈ Cn satisfies

(2.3.3) ‖x− y‖ <
1

20γ(F, x)
,

then y is a approximate zero of F with associated solution x∗.

Proof.
�� ��add a reference �

Exercise 2.3.4. For a polynomial f = x2 − 1 find an upper bound on ε > 0
such that x = 1 + ε and y = 1− ε pass the robust α-test, i.e., satisfy the hypotheses
of Theorem 2.3.3.

Exercise 2.3.5. Let f ∈ R[x], assume that all points in V(f) ⊂ C are regular,
and let Z ⊂ C be a set of deg f approximate zeros associated to distinct zeros of f .

Design a procedure that selects approximate zeros in Z that are associated to
real zeros of f .


