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3.1. Polynomial rings and ideals

The main object of study in this section is a polynomial ring in a finite number
of variables R = k[x1, . . . , xn], where k is an arbitrary field.

The abstract concept of a ring (R,+, ·) assumes that
(1) operations + (addition) and · (multiplication) are defined for pairs of ring

elements,
(2) both (R,+) and (R, ·) are abelian groups, i.e., both addition and multipli-

cation are commutative,
(3) multiplication distributes over addition:

(a+ b)c = ac+ bc, a, b, c ∈ R,

(4) there exist an additive identity, denoted by 0, and a multiplicative identity,
denoted by 1, such that

1 · a = a,

(5) there exists an additive inverse −a for every a ∈ R:

a+ (−a) = 0.

The ring of polynomials possesses a natural addition and multiplication satis-
fying the above ring axioms. Moreover, it enjoys many other “nice” properties: for
instance, the multiplication is cancellative:

fg = fh =⇒ g = h, f, g, h ∈ R, f 6= 0,

which follows from the fact that a polynomial ring is an integral domain, i.e., a ring
with no zero divisors: for f, g ∈ R,

fg = 0 =⇒ f = 0 or g = 0.

Sometimes a polynomial ring R = k[x1, . . . , xn] is referred to as a polynomial
algebra (over k) when one needs to emphasize that R is a vector space over the field
of coefficients k equipped with a bilinear product; note that bilinearity here follows
from the distributivity of multiplication in the definition of a ring.
Note: A field is a ring where each nonzero element has a multiplicative inverse.

In this text we mostly use fields such as Q, R, and C as coefficient fields in polynomial
rings. However, one other field closely related to a polynomial ring R = k[x1, . . . , xn] is
the field of rational functions, denoted by k(x1, . . . , xn), the elements of which are of the
form

f

g
, where f, g ∈ R;

„
f

g
=
f ′

g′
⇐⇒ fg′ = f ′g

«
.

Every nonzero element f/g has (f/g)−1 = g/f as its multiplicative inverse.

3.1.1. Ideals. An ideal of R is a nonempty k-subspace I ⊆ R closed under
multiplication by elements of R:

gI = { gf | f ∈ I } ⊆ I, g ∈ R.

Two trivial ideals of I are the zero ideal {0} (denoted by 0) and the whole ring R.
One way to construct an ideal is to generate one using a finite set of polynomials.

For f1, . . . , fr ∈ R, we define

〈f1, . . . , fr〉 = { g1f1 + · · ·+ grfr | gi ∈ R } ⊆ R,
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the set of all linear combinations of generators fi with polynomial coefficients gi.
The fact that the set I = 〈f1, . . . , fr〉 is an ideal follows straightforwardly from the
definition.

The set I = 〈f〉 = { gf | g ∈ R } for an element f ∈ R is called a principal ideal
and f is called a principal generator of I. Note that R = 〈1〉.

Exercise 3.1.1. A ring, each ideal of which is principal, is called a principal
ideal domain (PID). Show that the ring of univariate polynomials is a PID.

We can construct an ideal using an arbitrary (possibly infinite) set of generators
G ⊆ R:

〈G〉 =
⋃

F⊆G,|F |<∞

〈F 〉 .

However, every ideal I ⊆ R is finitely generated, i.e., I = 〈f1, · · · , fr〉 for some finite
number r of polynomials fi ∈ R (see Theorem 3.2.10). This is yet another “nice”
property of R: a ring with such property is called Noetherian.

Exercise 3.1.2. A ring is said to satisfy the ascending chain condition (ACC)
if every chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·
stabilizes, i.e., there is i0 such that Ii = Ii0 for all i > i0.

For an arbitrary ring, show that this condition is equivalent to the condition of
all ideals being finitely generated.

Example 3.1.3. Consider an ideal I =
〈
x+ y, x2

〉
⊆ k[x, y]. However, we can

pick another set of generators of I; for instance, I =
〈
x+ y, y2

〉
.

The polynomials in the second set of generators belong to I as

y2 =
�� ��x2 + (y − x)
�� ��(x+ y) .

This shows the containment
〈
y2, x+ y

〉
⊆ I. Since, in a similar way, the reverse

containment can be shown, the ideals are equal.

Exercise 3.1.4. Determine whether the following subsets of R are ideals:
(1) k, the field of coefficients;
(2) a subring k[x1, . . . , xm] ⊂ R = k[x1, . . . , xn], where 0 < m < n;
(3) polynomials with no constant term;
(4) R≤d, polynomials of degree at most d;
(5) homogeneous polynomials, i.e., polynomials with all terms of the same

degree.

3.1.2. Sum, product, and intersection of ideals. The sum of two ideals
I and J (as k-subspaces),

I + J = { f + g | f ∈ I, g ∈ J } ,

is an ideal. So is the intersection

I ∩ J = { f | f ∈ I, f ∈ J } .

Exercise 3.1.5. Prove that I+J is the smallest ideal containing I and J . Show
that, if I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉, then I + J = 〈f1, . . . , fr, g1, . . . , gs〉.
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Exercise 3.1.6. Show that the ideal generated by products of elements in I
and J ,

IJ = 〈 fg | f ∈ I, g ∈ J 〉 ,
is contained in I ∩ J . (Exercise 3.1.7 shows that IJ 6= I ∩ J in general.)

Exercise 3.1.7. Consider the univariate polynomial ring R = k[x].
(1) How would one find a principal generator of 〈f〉 ∩ 〈g〉?
(2) How would one find a principal generator of 〈f〉 〈g〉?
(3) Give an example of f and g where the ideals above (the intersection and

the product) are not the same.

3.1.3. Ring maps amd quotient rings. Let R and S be rings, a map R→ S
is called a ring map if it respects both additive and multiplicative structure of the
rings.

Example 3.1.8. The following ring maps involving polynomial rings are fre-
quently used:

• specialization of a variable

(·)|xi=ai
: k[x1, . . . , xn]→ k[x1, . . . , xi−1, xi+1, . . . , xn], ai ∈ k,

f = f(x1, . . . , xn) 7→ f |xi=a
= f(x1, . . . , xi−1, ai, xi+1, . . . , xn);

• evaluation a point a = (a1, . . . , an) ∈ kn,

ea : k[x1, . . . , xn]→ k,

f(x1, . . . , xn) 7→ f(a1, . . . , an);

• variable substitution:

k[x1, . . . , xn]→ k[y1, . . . , ym],

f(x1, . . . , xn) 7→ f(g1(y1, . . . , ym), . . . , gn(y1, . . . , ym)),

where g1, . . . , gn are polynomials in the ring k[y1, . . . , ym].

Every polynomial ring map can be defined as the last map in Example 3.1.8,
since every ring map is determined by its action on the ring generators of the
domain, which in case of a polynomial ring are the variables.

A map φ : R→ S is called an isomorphism, if there is a map ψ : S → R (called
the inverse map of φ) such

ψφ = idR and φψ = idS ,

where idR : R→ R denotes the identinity map on R.

Exercise 3.1.9. Let R = k[x1, . . . , xn]. A matrix A ∈ k(n+1)×n defines a linear
substitution g1

...
gn

 = A

x1

...
xn

 ∈ Rn
that can be used to make an endomorphism (the source and target of the map
coincide) φA : R→ R using the recipe of last map in Example 3.1.8. If the ring map
φA is an automorphism (endomorphism that is an isomorphism), it is commonly
referred to as a linear change of coordinates.
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(1) Find a condition on A for φA to be an automorphism (endomorphism that
is an isomorphism).

(2) If φA is an automorphism, find B such that φB is its inverse.

Exercise 3.1.10. Prove that the kernel of a polynomial ring map, i.e., the set
of elements tha map to zero, is an ideal.

Given an ideal I ⊆ R we introduce the quotient ring R/I. The elements of R/I
are equivalence classes [f ] = { g ∈ R | f − g ∈ I } ⊆ R where f ∈ R. Two elements
f, g ∈ R are equivalent modulo I if [f ] = [g]; that, in turn, holds iff f − g ∈ I.

The ring structure of R/I is induced by that of the ring R:
• [f ] + [g] = [f + g];
• [f ][g] = [fg];
• [0] is the additive and [1] is the multiplicative identities.

The addition above is well defined: if f ′ ∈ [f ], g′ ∈ [g] are alternative representatives
then [f ′ + g′] = [f + g], since f ′ + g′ − (f + g) = (f ′ − f) + (g′ − g) ∈ I.

Exercise 3.1.11. Show that the product in a quotient ring is well defined.

There is a natural surjective ring map

φ : R→ R/I

f 7→ [f ]

Proposition 3.1.12. Let I be an ideal in an arbitrary ring R. There is a one-
to-one correspondence between ideals of R/I are ideals of R containing I. Sums,
intersections, and products of ideals are preserved under this correspondence.

Proof. We claim that the ring map φ above establishes a one-to-one corre-
spondence.

Take an ideal J ⊆ R, then φ(J) is an ideal of J ; in fact, this is true for any
map φ. This follows from the definition of an ideal and the fact that φ respects the
ring addition and multiplication. Similarly, if J̄ is an ideal of R/I then φ−1(J̄) is
an ideal of R; it contains the preimage of zero φ−1([0]) = I. �

Exercise 3.1.13. Let R = k[x1, . . . , xn] and I = 〈xm+1, . . . , xn〉. Show that
the rings R/I and S = k[x1, . . . , xm] are isomorphic via a natural ring map ψ :
R/I → S,

ψ([f ]) = f(x1, . . . , xm, 0, ..., 0) ∈ S, f ∈ R.

Exercise 3.1.14. Consider ideal I =
〈
x2 + 1

〉
⊂ Q[x].

Prove that the quotient ring Q[x]/I is a field; it is called the field of Gaussian
rational numbers. (Hint: For each element of Q[x]/I find a “small” representatitive
in Q[x] and then determine its inverse.)
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3.2. Gröbner bases

It has been pointed out (e.g., in Example 3.1.3) that the same nonzero ideal
can be generated by different sets of generators. In this section we develop a theory
and algorithms to convert any generating sets into a Gröbner basis, a generating
set with helpful special properties.

3.2.1. Monomial orders. A monomial order is a recipe for comparing two
monomials in a polynomial ring R = k[x1, . . . , xn] with the following properties:

(1) It is a total order: for every pair of distinct monomials xα and xβ , α, β ∈
Nn,

either xα > xβ or xα < xβ .

(2) It is a multiplicative order:

xα > xβ =⇒ xα+γ = xαxγ > xβxγ = xβ+γ , α, β, γ ∈ Nn.

(3) It is a well-order: every nonempty set (of monomials) has a minimal
element. Together with being a total order, this implies that

x0 = 1 < xα, α ∈ Nn − {0}.

Exercise 3.2.1. Show that there is only one monomial order for monomials of
a univariate polynomial ring.

Example 3.2.2. A lexicographic order on k[a, b, c, . . . , z] compares monomials
as words in a dictionary:

a3b2c = aaabbc > aabbbcccc = a2b3c4

as “aaabbc” comes before “aabbbcccc” in the dictionary.
This can be used with any alphabet: for k[x1, . . . , xn], we have

xα >lex x
β ⇐⇒ α1 > β1 or (α1 = β1 and x(0,α2,...,αn) >lex x

(0,β2,...,βn)).

One important class of monomial orders is graded monomial orders, the ones
that refine the (non-total) order by degree.

Example 3.2.3. The graded lexicographic order compares the degrees of mono-
mials first and “breaks the tie”, if necessary, using the lexicographic order:

xα >glex x
β ⇐⇒ |α| > |β| or (|α| = |β| and xα >lex x

β).

Note: The default monomial order used by many computer algebra systems is graded

reverse lexicographic order.

Exercise 3.2.4. For a polynomial f = x3y+ 2x2y2 + xy3 + x+ y2 + y+ 1 find
LM(F ), where

(1) >=>lex, x > y;
(2) >=>lex, y > x;
(3) >=>glex, x > y;
(4) >=>glex, y > x.

Another useful class of monomial orders are block orders that compare mono-
mials according to a fixed partition of the sets of variables into blocks.
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Let >1 be an order on the on monomials in x1, . . . , xm and >2 be and order on
monomials in xm+1, . . . , xn. The 2-block order >2,1 on monomials in x1, . . . , xn is

xα >1,2 x
β ⇐⇒ x

αm+1
m+1 · · ·xαn

n >2 x
βm+1
m+1 · · ·xβn

n or

(xαm+1
m+1 · · ·xαn

n = x
βm+1
m+1 · · ·xβn

n and xα1
1 · · ·xαm

m >1 x
β1
1 · · ·xβm

m ).

Note that >lex is a 2-block order with respect to the blocks {x1, . . . , xm} and
{xm+1, . . . , xn}.

3.2.2. Normal form algorithm. In §1.1.4 we have introduced NFf the nor-
mal form function that maps a polynomial g ∈ k[x] to its remainder after division
by the polynomial f ∈ k[x]. We would like to define the normal form NFF : R→ R,
where R = k[x1, . . . , xn], with respect to a system of polynomials F ∈ Rr.

Algorithm 3.2.1 h = NF (g, F )

Require: g ∈ R;
F ∈ Rr, r > 0;

Ensure: h ∈ R, such that

(3.2.1) g = h+
r∑
i=1

qifi, qi ∈ R, deg qi + deg fi ≤ deg g

and either h = 0 or LM(h) is not divisible by LM(f) for all f ∈ F .
h← g
while h 6= 0 and LM(h) is divisible by LM(f) for some f ∈ F do
f ← first polynomial in the set F such that LM(f) |LM(h)

h← h− LT(h)
LT(f)

f

end while

The leading monomials and leading terms in Algorithm 3.2.1 are taken with
respect to a fixed monomial order >. If this needs to be emphasized, we write
NF(>)

F ; normal forms for the same input, but different monomial orders are not the
same, in general.

Proof of termination and correctness of Algorithm 3.2.1. Let hi be
the contents of h at the i-th iteration. Then

LM(h1) > LM(h2) > LM(h3) > · · ·
Since a monomial order is a well-order, the descending sequence of monomials
terminates, so does the algorithm. The condition (3.2.1) holds for all h = hi by
construction. When the algorithm terminates h is either 0 or LM(h) is not divisible
by LM(f) for all f ∈ F . �

Exercise 3.2.5. Let f1, . . . , fr ∈ I, where I ⊆ R is an ideal.
Show that NF(f1,...,fr)(g) ∈ I iff g ∈ I.

Note: As its univariate analoque, Algorithm 3.2.1 can be modified to compute not only

the “remainder”, but also the “quotients”, i.e., polynomial coefficients qi ∈ R in (3.2.1).

Note that, in general, the normal form also depends on the order of polynomials
in the system.
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Example 3.2.6. Consider two polynomials in k[x, y, z],

f1 = x− y,
f2 = x− z2.

Fix the monomial order >=>lex, x > y > z.
Then NF(f1,f2)(x) = y and NF(f2,f1)(x) = z2.

Exercise 3.2.7. For f1 = x3 + y2, f2 = xy + 1, and

g = x3y + 2x2y2 + xy3 + x+ y2 + y + 1,

polynomials in k[x, y] with the lexicographic order such that x > y, find
(1) NF(f1,f2)(g)
(2) NF(f2,f1)(g)

3.2.3. Initial ideal, Dickson’s Lemma, Noetherianity. For a polynomial
ideal I ⊂ R, the ideal generated by the leading monomials of all polynomials of I
is called the initial ideal and denoted

in(I) = 〈LM(f) | f ∈ I 〉 .
Again, if we need to emphasize the (usually fixed) monomial order > that is used,
we would write in>(I).

Exercise 3.2.8. For the ideal I =
〈
x− y, x− z2

〉
⊂ k[x, y, z] find

(1) the initial ideal in>lex(I) with respect to the lexicographic ordering;
(2) the initial ideal in>glex(I) with respect to the graded lexicographic ordering.

We need the following lemma to show that every ideal I of a polynomial ring
R can be finitely generated; this is one of the ways to say that R is Noetherian.
(We refered to this fact in §3.1.1 without a proof.)

Lemma 3.2.9 (Dickson’s Lemma). Every monomial ideal (i.e., ideal generated
by monomials) is finitely generated.

Theorem 3.2.10. A polynomial ring R is Noetherian.

Proof. Let I ⊆ R be a nonzero ideal of R, then, by Dickson’s Lemma, its
initial ideal is finitely generated:

in(I) = 〈m1, . . . ,mr〉 , r > 0.

Pick fi ∈ I such that LM(fi) = mi and let

J = 〈f1, . . . , fr〉 , J ⊆ I.
Take g ∈ I and compute h = NF(f1,...,fr)(g). On one hand, by Exercise 3.2.5, h ∈ I.
On the other, if h 6= 0, then LM(h) /∈ in(I) as it is not divisible by monomials mi,
which leads to a contradiction. Therefore, h = 0 and g ∈ J ; we conclude that
J = I. �

Proof of Dickson’s Lemma. Let G be a (possibly infinite) set monomials
generating the ideal J = 〈G〉. Without a loss of generality we may assumeG consists
of minimal elements with respect to divisibility: if two monomials xα, xβ ∈ G are
such that xα divides xβ , then the latter can be excluded from G.

First, we can see a monomial ideal J ⊆ k[x1, . . . , xn] generated as follows

J =
〈
J0 ∪ x1J1 ∪ x2

1J2 ∪ · · ·
〉
,
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where Ji ⊆ k[x2, . . . , xn] are monomial ideals (in a ring with one fewer variable)
such that {

xi1x
β2···βn |xβ2···βn ∈ in(Ji)

}
= {xα1α2···αn ∈ in(J) |α1 = i } .

Using induction on the number of variables in a polynomial ring, we may assume
that k[x2, . . . , xn] is Noetherian. The base of induction is the case R = k, a poly-
nomial ring with no variables, which has only trivial ideals.

Observe that J1 ⊆ J2 ⊆ · · · is an ascending chain of ideals. By Noetherianity
it stabilizes; we also may pick finite generating sets of monomials Gi for Ji.

Now the infinite union above becomes finite: for some s > 0,

J =
〈
J0 ∪ x1J1 ∪ x2

1J2 ∪ · · · ∪ xs1Js
〉

=
〈
J0 ∪ x1G1 ∪ x2

1G2 ∪ · · · ∪ xs1Gs
〉
,

which shows that J is generated by a finite number of monomials. �

3.2.4. Gröbner bases and their properties. Fix a polynomial ring R and
a monomial order.

A set G ⊆ R is a Gröbner basis of an ideal I ⊆ R if
• I = 〈G〉, and
• in(I) = 〈in(G)〉, where in(G) = { in(g) | g ∈ G }.

Example 3.2.11. The set G =
{
x− y, x− z2

}
⊆ k[x, y, z] is

• not a Gröbner basis of I = 〈G〉 with respect to >lex(x,y,z), since in(I) 3
y = in(y − z2), however in(G) = 〈x〉 63 y;

• a Gröbner basis of I = 〈G〉 with respect to >lex(z,y,x): one can show that
inlex(z,y,x)(I) =

〈
y, z2

〉
.

Proposition 3.2.12. Let G be a Gröbner basis of an ideal I and consider a
polynomial f ∈ R.

(1) NFG(f) = 0 ⇐⇒ f ∈ I.

Proof. Let h = NFG(f); note that h ∈ I ⇐⇒ f ∈ I, by Exercise 3.2.5.
However, either h = 0 or LM(h) /∈ in(I), since the leading monomials of elements
in G generate in(I).The conclusion is that h ∈ I ⇐⇒ h = 0. �

Given a fixed monomial order, define the normal form NFI(f) of f ∈ R with
respect to an ideal I to be the output of Algorithm 3.2.2.

Corollary 3.2.13 (of Proposition 3.2.12). A polynomial f ∈ R belongs to an
ideal I ⊆ R iff NFI(f) = 0.

Proposition 3.2.14. There is a unique h ∈ R, such that h ≡ f (mod I) and
all monomials of h are not in in(I).

Proof. Suppose two distinct h′, h ∈ R satisfy the hypotheses. On one hand,
h−h′ = (h−f)−(h′−f) ∈ I; on the other, monomials of h−h′ do not belong to in(I),
hence, h− h′ = NFI(h− h′). We conclude that h− h′ = 0 by Corollary 3.2.13. �

Corollary 3.2.15. For any polynomial f ∈ R and any ideal I ⊆ R, the normal
form NFI(f) does not depend

• neither on the choice of the Gröbner basis G in Algorithm 3.2.2
• nor on the order of reductions in Algorithm 3.2.1.
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Algorithm 3.2.2 h = NF(f, I)

Require: f ∈ R = k[x1, . . . , xn] with a fixed monomial order;
I ⊆ R, an ideal (given by a finite set of generators);

Ensure: h ∈ R, such that h ≡ f (mod I) and all monomials of h are not in in(I).

G← a Gröbner basis of I
h← 0
t← f -- This is the “tail” that we reduce.
while t 6= 0 and LM(t) is divisible by LM(g) for some g ∈ G do
t← NFG(t)
if h 6= 0 then
h← h+ LT(t)
t← t− LT(t)

end if
end while

A Gröbner basis G of an ideal I is called reduced if
• LC(g) = 1 for all g ∈ G (g is monic),
• LM(g), g ∈ G, are distinct,
• NFI(g − LM(g)) = g − LM(g) (no other monomials in in(I)).

Exercise 3.2.16. Show that (provided a fixed monomial order) the reduced
Gröbner basis is unique for any ideal.

Exercise 3.2.17. Fix the monomial order >glex. Knowing that

G =
{

2x2 − 2y2, y3− xy2 + xy − x2, xy2 − 3xy + 2x
}

is a Gröbner basis of the ideal I = 〈G〉, find the reduced Gröbner basis of I.

3.2.5. Buchberger’s algorithm. Now we are ready to provide the missing
piece of Algorithm 3.2.2 is a subroutine that would compute a Gröbner basis for
an ideal generated by a finite set of polynomials.

For two nonzero polynomials f, g ∈ R. Define the s-polynomial of f and g

Sf,g =
LT(g)

gcd(LM(f) ,LM(g))
f − LT(f)

gcd(LM(f) ,LM(g))
g ∈ R.

Theorem 3.2.18 (Buchberger’s criterion). Let G ⊆ R be a finite set of poly-
nomials, then G is a Gröbner basis of the ideal I = 〈G〉 (with respect to a fixed
monomial order) iff NFG(Sf,g) = 0 for all f, g ∈ G.

Proof. If G is a Gröbner basis, then Sf,g ∈ I implies NFG(Sf,g) = 0 by
Proposition 3.2.12. To prove the statement in the other direction, we will show
that, when every s-polynomial reduces to zero, every element f ∈ I also reduces to
zero with respect to G. This is sufficient, since it implies in(I) = 〈in(G)〉.

Let G = {g1, . . . , gr}. If f =
∑r
i=1 higi for hi ∈ R, we shall call the sequence

h = (h1, . . . , hr) a representation of f ∈ I. Define the leading monomial λ of a
representation to be

λ = λ(h) = max
i

LM(higi)

and the multiplicity µ of the representation to be the number of times the equality
LM(higi) = λ(h1, . . . , hr) holds for i = 1, . . . , r.
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Let f = NFG(f) be a (reduced) polynomial in I and suppose it is nonzero.
Suppose (h1, . . . , hr) is a representation of f with the smallest possible leading
monomial λ and multiplicity µ.

If µ = 1, then LM(f) = LM(higi) for some i, which contradicts our assumption
(that f is reduced).

For µ > 1, take 1 ≤ i < j ≤ r such that LM(higi) = LM(hjgj). This means
that for the monomial m = λ/lcm(LM(gi) ,LM(gj)) and some c ∈ k,

LT(hi) gi = cm lcm(LM(gi) ,LM(gj)).

Since NFG(Sgi,gj ) = 0, there are ĥi such that

Sgi,gj
=

r∑
i=1

ĥigi and LM
(
ĥigi

)
< lcm(LM(gi) ,LM(gj)).

One can check that representation h′ of f (obtained by adding a representation of
0 corresponding to the above),

h′l = hl + cm ĥl, if l /∈ {i, j} ,
h′i = hi − cm

(
LT(gj)

gcd(LM(gi),LM(gj)) + ĥi

)
,

h′j = hj + cm
(

LT(gi)
gcd(LM(gi),LM(gj)) + ĥj

)
,

has either λ(h′) < λ(h) (this happens if µ(h) = 2) or λ(h′) = λ(h) but µ(h′) < µ(h).
This contradicts the minimality of representation h. Hence, NFG(f) = 0 for every
f ∈ I. �

The criterion translates into Buchberger’s algorithm for finding a Gröbner basis
(Algorithm 3.2.3).

Algorithm 3.2.3 G = Buchberger(I)

Require: I = 〈F 〉 ⊆ R, an ideal given by a finite set of generators F ;
Ensure: G ⊆ R, a Gröbner basis of I (with respect to a fixed monomial order).
G← F
S ← G×G -- The queue of s-pairs.
while S 6= ∅ do

Pick (f1, f2) ∈ S.
S ← S − {(f1, f2)}
g ← NFG (Sf1,f2)
if g 6= 0 then
S ← S ∪ {g} ×G
G← G ∪ {g}

end if
end while

Proof of termination and correctness of Algorithm 3.2.3. LetGi be
an intermediate set of generators at step i of the algorithm. The sequence

G1 ⊆ G2 ⊆ · · ·
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has a property that either Gi+1 = Gi or LM(Gi) ( LM(Gi+1), which which mirrors
in the sequence

〈LM(G1)〉 ⊆ 〈LM(G2)〉 ⊆ · · ·
Since the latter sequence has to stabilize due to Noetherianity of the polynomial
ring, the former one stabilizes too. This means that no new elements are appended
to the set G = Gfinal after some step and the algorithm runs through the remaining
s-pairs reducing each of them to zero and stops.

The s-polynomials of s-pairs that resulted in a new element g ∈ G reduce to
zero, since g ∈ Gfinal. Therefore, every s-pair considered during the run reduces to
zero and the algorithm goes through all pairs Gfinal ×Gfinal by construction. �
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3.3. Basic computations in polynomial rings

Here we discuss basic computations in polynomial rings that Gröbner bases
enable.

Proposition 3.2.12 already provides us with a way to test if a polynomial belongs
to an ideal: the so-called ideal membership test.

3.3.1. Computations in a quotient ring. Given an ideal I ⊆ R consider
the quotient ring R/I. Proposition 3.2.14 and Corollary 3.2.15 give a way to pick a
canonical representative for [f ] ∈ R/I: take the normal form of the representative
f ∈ R:

[NFI(R)] = [f ].
Note that representation with normal forms gives a one-to-one correspondence
between polynomials involving only standard monomials (i.e., monomials outside
in(I)) and R/I.

Example 3.3.1. The set

G =
{�� ��x2 − y2,
�� ��y3 − 2xy − y2 + 2x,

�� ��xy2 − 3xy + 2x
}

is a Gröbner basis of I = 〈G〉 with respect to >glex. The S =
{

1, x, y, xy, y2
}

is the
set of standard monomials.

Therefore, as a k-space, R/I is finite-dimensional. (This is equivalent to saying
that ideal I and the system of polynomials G are 0-dimensional in the ring-theoretic
sense.)

We used this fact in Chapter 1 to construct the multiplication map

Mf : R/I → R/I, [g] 7→ [fg]

and applied it to solving the polynomial system G via eigenvalues of operators Mf

where f is set equal to one of the variables.

3.3.2. Elimination. Another fundamental problem is that of elimination:
given and ideal I ⊂ k[x, y] = k[x1, . . . , xn, y1, . . . , ym] find J = I ∩ k[x] (an ideal of
k[x]), i.e., eliminate yi.

Fix a block order >2,1 (see §3.2.1) constructed from some monomial orders >1

on k[x] and >2 on k[y]. We say that such order eliminates the variables yi and
sometimes write yi � xj for all i, j.

One can show that if G is a Gröbner basis of I with respect to >2,1 , then
G∩ k[x] is not only a generating set, but also a Gröbner basis of J with respect to
>1 .

Example 3.3.2. Fix the elimination order with y � x on R = k[x, y] and
consider the ideal I of Example 3.3.1. The set

G =
{
x4 − 2x3 − x2 + 2x, 3yx− x3 − 2x, y2 − x2

}
is a Gröbner basis of I with respect to this order.

Therefore, J = I ∩ k[x] =
〈
x4 − 2x3 − x2 + 2x

〉
. Now solving the univariate

equation and substituting the values of x in the other equations gives a solving
method that was also discussed in Chapter 1.


