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4.1. Ideal-variety correspondence

The correspondence between algebra and geometry about to be discussed is the
core of the area called algebraic geometry, which uses geometric intuition on one
hand and algebraic formalism on the other. Computations in polynomial rings is
what drives the effective methods in algebraic geometry.

In this section we will consider the polynomial ring R = k[x] = k[x1, . . . , xn]
over an algebraically closed field k, i.e., a field such that every univariate polynomial
with coefficients in k has its roots in k. From the list of popular fields that we
considered (Q,R,C) only the field of complex numbers is algebraically closed; this
follows from the fundamental theorem of algebra. Note that, e.g., polynomial x2 +1
has coefficients in Q ⊂ R, but its roots are not real. Therefore, neither Q nor R are
not algebraically closed.

In the rest of the text we assume k = C and will describe the classical (complex)
algebraic geometry, an area where the main object of study is a variety (as we
defined above) sometimes referred to by the full name of complex affine variety.

We have already introduces the concept of a variety V(F ) given by a system of
polynomials F ⊂ R (see §1.2). Here we would like to regard the operation V(. . .)
as a map

V : {ideals} → {varieties}
I 7→ V(I) = {x ∈ kn | f(x) = 0, for all f ∈ I }

Exercise 1.2.2 implies that V(I) = V(F ) for any generating set F of the ideal I.
In the opposite direction we have a map

I : {varieties} → {ideals}
V 7→ I(V ) = { f ∈ R | f(x) = 0, for all x ∈ V }

We refer to I(V ) as the ideal of V . (Fuller names are vanishing ideal and defining
ideal.)

Exercise 4.1.1. Show that for an arbitrary set V ⊂ kn (not necessarily a
variety) I(V ) is an ideal.

Exercise 4.1.2. Show that both V and I are inclusion-reversing, i.e,
• I ⊆ J =⇒ V(J) ⊆ V(I),
• V ⊆W =⇒ I(W ) ⊆ I(V ).

A variety V is called a hypersurface if I(V ) is a proper principal ideal, i.e., it is
defined by one nonconstant polynomial.

Example 4.1.3. V
(
x2 + y2 + z2 − 1

)
is a hypersurface in k3 with coordinates

x, y, z and V
(
x2 + y2 − 1

)
is a hypersurface in k2 with coordinates x, y.

If I is an ideal and f ∈ R, the variety

V(I + 〈f〉) = {x ∈ V(I) | f(x) = 0 }
is simply the intersection of the variety V(I) with the hypersurface V(f).

Exercise 4.1.4. The variety V = V
(
y − x2, z − x3

)
⊂ k3 is called the

twisted cubic. Find the ideal of the projection of V onto
(1) the xy-plane;
(2) the xz-plane;
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(3) the yz-plane. (Hint: Look at implicitization procedure in §6.2.1.)

4.1.1. Hilbert’s Nullstellensatz. “Nullstellensatz” translates as “theorem
about zeros of functions” from German.

Theorem 4.1.5 (Weak Nullstellensatz). If I ⊆ R is an ideal with V(I) = ∅,
then I = R.

Proof.
�� ��add a reference �

Theorem 4.1.6 (Hilbert’s Nullstellensatz). Let I ⊆ R be an ideal and f ∈ R
be a polynomial vanishing at every point of the variety V(I).

Then there exists m > 0 such that fm ∈ I.

Proof.
�� ��add a reference �

Hilbert’s Nullstellensatz is stronger than the weak Nullstellensatz: indeed, any
function vanishes at every point of an empty set, hence, some power of f = 1
belongs to I if V(I) = ∅.

Exercise 4.1.7. Let V ⊆ kn be a variety and I ⊆ R be an ideal. Show
that

(1) V(I(V )) = V ;
(2) I ⊆ I(V(I)) (In general, I 6= I(V(I)); e.g., see Exercise 4.1.8.)

Exercise 4.1.8. Draw the real points of the varieties V
(
x2 + y2 − 1

)
,

V(x− 1), and V = V(I), where I =
〈
x2 + y2 − 1, x− 1

〉
.

Show that I(V ) 6= I.

4.1.2. Radical ideals. The radical of an ideal I ⊆ R is
√
I = { f ∈ R | fm ∈ I for some m } .

An ideal I ⊆ R is a radical ideal if
√
I = I.

Proposition 4.1.9. If I is an ideal, then the set
√
I is an ideal.

Proof. Take f, g ∈
√
I. Then there exist a, b such that fa, gb ∈ I.

Each term in the binomial expansion

(f + g)a+b =
a+b∑
i=0

(
a+ b

i

)
f iga+b−i

has a factor of either fa or gb. Therefore, (f + g)a+b ∈ I and f + g ∈
√
I.

Also, for all h ∈ R, the multiple hf ∈
√
I, since (hf)a ∈

√
I. �

Two immediate corollaries follow.

Corollary 4.1.10. If I is a proper ideal, then
√
I is.

Proof. The element 1 /∈
√
I, since all powers of 1 are not in I. �

Corollary 4.1.11. Nontrivial ideals that are maximal (with respect to inclu-
sion) are radical.
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Proof. Let m ( R be a maximal ideal. Then m ⊆
√

m ( R, which forces
m =

√
m. �

Exercise 4.1.12. Show that for every ideal I,

(1) V
(√

I
)

= V(I),

(2)
√√

I =
√
I.

Exercise 4.1.13. For a point a ∈ kn, show that the ideal

ma = I({a}) = 〈x1 − a1, . . . , xn − an〉
is maximal.

Prove that every maximal ideal (in the polynomial ring R = C[x]) has this
form.

Exercise 4.1.14. Show that for every V ⊆ kn the ideal I(V ) is radical.

In fact, restricted to radical ideals, the maps I and V establish a one-to-one
correspondence

{varieties} ↔ {radical ideals} .

Exercise 4.1.15. Show that if the ideal I is radical and f /∈ I then
V(I + 〈f〉), the intersection of V = V(I) with the hypersurface V(f), is strictly
smaller than V .

4.1.3. Irreducible varieties and prime ideals. A variety V is irreducible
if it can not be decomposed as V = V1 ∪ V2 where V1, V2 ( V are strictly smaller
varieties.

An ideal I is prime if for every pair f, g ∈ R,

fg ∈ I =⇒ f ∈ I or g ∈ I.

Proposition 4.1.16. Prime ideals and irreducible varieties are in one-to-one
correspondence.

Proof. Let V be an irreducible variety and consider I = I(V ), which is radical
by Exercise 4.1.14. Suppose f, g ∈ R are such that fg ∈ I, but f, g /∈ I. Then both
V1 = V(I + 〈f〉) ( V(I) and V2 = V(I + 〈g〉) ( V(I) by Exercise 4.1.17. On the
other hand, a point x ∈ V belongs either to V1 or to V2, since fg ∈ I. Therefore,
V = V1 ∪ V2 contradicts the irreducibility of V . We conclude that I is prime.

Let I be prime. If V = V(I) is reducible, then V = V1 ∪ V2 for V1, V2 ( V . We
can find f, g ∈ R such that f ∈ I(V1) \ I(V2) and g ∈ I(V2) \ I(V1). Now fg ∈ I (as
fg vanishes on V ), but f, g /∈ I, which can not happen, since I is prime. Therefore,
V is irreducible. �

Exercise 4.1.17. Show that
(1) every maximal ideal is prime;
(2) ideal 〈x1, . . . , xm〉 is prime for any m;
(3) the hypersurface V(f) is irreducible iff f does not factor.
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Define an r-plane in kn to be a variety V(`1, · · · , `n−r) where fi ∈ R≤1 are
linearly independent linear functions. One can use Exercise 4.1.17 to show that an
r-plane is irreducible. An (n− 1)-plane is called a hyperplane.
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4.2. Zariski topology, irreducible decomposition, and dimension

We shall introduce a topology on the space kn that is weaker than the usual
topology induced by the distance metric.

4.2.1. Varieties as Zariski closed sets. The closed sets of Zariski topology
are varieties V ⊆ kn. The open sets are their complements U = kn \ V , where
V is closed. The geometric intuition dictated by the definition of a variety makes
the axioms of a topolgy hold. One can use basic operations discussed in §4.3 to
rigorously check that this indeed is a topology:

(1) The trivial subsets and kn are closed sets.
(2) The intersection of a collection of closed sets is a closed set.
(3) The union of a finite number of closed sets is a closed set.

Given any subset S ⊆ kn, we define the Zariski closure of S

S = V(I(S)).

Exercise 4.2.1. Show that the unit ball B = {x ∈ C | |x| ≤ 1 } ⊆ C is
neither a closed nor an open set in Zariski topology.

What is the Zariski closure of B?

4.2.2. Irreducible decomposition of a variety. Every Zariski closed set
can be decomposed into a finite union of irreducible components.

Proposition 4.2.2. Let V be a variety. Then there exist varieties Vi ⊆ V ,
i = 1, . . . , r, (called irreducible components of V ) such that

• each Vi is irreducible,
• Vi is not contained in Vj for i 6= j, and
• V = V1 ∪ · · · ∪ Vr.

Moreover, such decomposition (called irreducible decomposition) is unique.

Proof. Consider a sequence of decompositions

V = V
(i)
1 ∪ · · · ∪ V (i)

ri

starting with V = V
(1)
1 where V (1)

1 = V . Given the i-th decomposition, if some
component is reducible, then it can be replaced with a union of two strictly smaller
varieties producing a finer decomposition at step i+ 1.

Suppose this process does not terminate, i.e., each decomposition contains at
least one reducible component. Then we can construct an infinite descending chain
of varieties

V
(1)
j1

) V
(2)
j2

) V
(3)
j3

) · · ·
which translates into the (strictly) ascending chain of their ideals

I
(
V

(1)
j1

)
( I
(
V

(2)
j2

)
( I
(
V

(3)
j3

)
( · · ·

However, since the polynomial ringR is Noetherian, this can not happen. Therefore,
an irreducible decomposition exists.

Suppose there are two irreducible decompositions: V = V1∪· · ·∪Vr and another
decomposition containing an irreducible component W that is distinct from all Vi.
Then V = W ∪W ′, where W ′ is the union of the rest of irreducible components in
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the second decomposition. Now note that Vi = (Vi ∩W )∪ (Vi ∩W ′), but Vi is irre-
ducible and W 6= Vi, therefore, Vi ⊆W ′. It follows that V ⊆W ′ contradicting the
assumption that W is an irreducible component in a decomposition. We conclude
that the irreducible decomposition is unique. �

4.2.3. Dimension. First, we define the dimension of an irreducible variety
V 6= ∅ to be the maximal length d of a chain

∅ 6= V0 ( V1 ( · · · ( Vd = V

where Vi are irreducible varieties. Note that the dimension is finite due to Noethe-
rianity.

The dimension of an arbitrary variety V is defined as the maximal dimension
of its irreducible components.

Exercise 4.2.3. Show that a finite set of points is 0-dimensional.

Note: The geometric notion of dimension defined above corresponds to the algebraic
notion of Krull dimension: the dimension of an ideal I ⊆ R is the maximal length d of
the chain

R 6= P0 ) P1 ) · · · ) Pd ⊃ I
where Pi are prime ideals.

For a variety dimV = dim I(V ); for an ideal dim I = dim V(I).

The dimension reduction principle says that intersecting of a variety V , dimV =
m, with a generic r-plane L of codimL = n − r ≤ m, reduces the dimension by
n− r:

dim(V ∩ L) = dimV − codimL = m− n+ r.

Note that if codimL > m then a generic r-plane L misses V , i.e., V ∩ L = ∅.

Remark 4.2.4. A variety V ⊆ kn and a generic r-plane, where r = codimV =
n− dimV , intersect at finitely many points.

In fact, this generic intersection is 0-dimensional iff r = codimV . This obser-
vation gives a way to determine dimV .

Exercise 4.2.5. Using the dimension reduction principle show that
(1) V(〈x1, . . . , xm〉) ⊆ kn has dimension n−m (codimension m);
(2) the dimension of an r-plane is r;
(3) a hypersurface V(f) in kn has dimension n− 1 (codimension 1).

A polynomial system F = (f1, . . . , fc) ⊆ R is a regular sequence if

dim V(f1, . . . , fm) = n−m, m = 1, . . . , c.

Note: In algebraic terms, F is a regular sequence if fm is not a zero-divisor inR/ 〈f1, . . . , fm−1〉,
m = 1, . . . , c.

A system F = (f1, . . . , fc) ⊆ R is a local regular sequence with respect to an
irreducible variety V if

dim (irreducible component of V(f1, . . . , fm) that contains V ) = n−m, m = 1, . . . , c.

Note: Our definition of a local regular sequence is equivalent to the definition of set-

theoretic local regular sequence (at a generic point of an irreducible variety V ) given in

commutative algebra.

An irreducible variety V is a local complete intersection if there is a local regular
sequence F (with respect to V ), such that V is an irreducible component of V(F ).
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The following algorithm gives a way to construct such F given polynomials that
define V .

Algorithm 4.2.1 F = LocalCompleteIntersection(G,V )

Require: G = (g1, . . . , gr) ⊂ R = C[x1, . . . , xn], a system of polynomials;
V , an irreducible component of V(G).

Ensure: F is a local regular sequence with respect to V is an irreducible component
of V(F ).
F ← ∅
W ← Cn
for i = 1 to r do

if there is an irreducible component W ′ of V(F ∪ {gi}) such that

V ⊆W ′ ( W

then
F ← F ∪ {gi}
W ←W ′

end if
end for

Proof of correctness of Algorithm 4.2.1. At every step of the algo-
rithm when a polynomial gets appended to the system F the new irreducible com-
ponent W ′ containing V is strictly smaller than the old (irreducible variety) W .
Hence, the dimension of W ′ is smaller than that of W ; in fact,

dimW ′ = dimW − 1,

since we add only one more polynomial.
Let c = |F | when algorithm terminates and

Wi1 ) Wi2 ) · · · ) Wic

be the sequence of irreducible varieties produced (the values that W takes at the
end of the loop at steps 1 ≤ i1 < i2 < · · · < ic ≤ r). Showing that Wic = V would
conclude this proof.

Suppose Wc 6= V . Then there exists gi ∈ G such that W ′i = Wi−1 (the case
when gi does not get appended to F ) and Wic ∩ V(gi) 6= V . But then W ′i ⊆
Wi−1 ∩ V(gi) 6= Wi−1, which produces a contradiction. �

Note that it is implied that the number of polynomials in the system F that
the algorithm outputs equals c = codimV .
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4.3. Basic computational operations

Here we shall discuss what operations on varieties correspond to basic opera-
tions on ideals

4.3.1. Intersection of varieties: sum of ideals. Let V,W ⊆ kn be vari-
eties; V = V(I) and W = V(J) for some ideals I, J ∈ R. Then V ∩W = V(I + J),
since V ∩W is precisely the set of points on which both polynomials of I and J
vanish.

Note that even if I and J are radical ideals, I + J is not radical in general.

Example 4.3.1. The ideals I = 〈y〉 and J =
〈
y − x2

〉
in k[x, y] are radical,

since they have irreducible principle generators. However,

I + J =
〈
y, y − x2

〉
=
〈
x2, y

〉
is not radical as

√
I + J = m0 = 〈x, y〉.

4.3.2. Union of varieties: intersection or multiplication of ideals.
Both intersection and multiplication of ideals correspond to taking union of the
corresponding varieties.

Exercise 4.3.2. Let V,W ⊆ kn be varieties; V = V(I) and W = V(J) for
some ideals I, J ∈ R.

(1) Show that V ∪W = V(IJ) = V(I ∩ J);
(2) Show that if Iand J are radical, I ∩ J is.
(3) Find an example of radical I and J such that IJ is not.

Let I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉. While finding a set of generators for
IJ is straightforward, namely

IJ = 〈 figj | i = 1, . . . , r; j = 1, . . . , s 〉 ,

how would one construct generators of I ∩ J?

Proposition 4.3.3. Given I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉, ideals in
R = k[x] = k[x1, . . . , xn], define

K = tI + (1− t)J = 〈tf1, . . . , tfr, (1− t)g1, . . . , (1− t)gs〉 ⊂ k[x, t].

Then K ∩ k[x] = I ∩ J .

Proof. The inclusion I ∩ J ⊆ K ∩ k[x] is straightforward: if f ∈ I ∩ J ⊆ k[x]
then f = tf + (1− t)f is in K (and still in k[x]).

Suppose f ∈ K ∩ k[x], i.e., f = g + h where g ∈ tI and h ∈ (1 − t)J . Then
g|t=0 = 0, therefore,

f = f |t=0 = g|t=0 + h|t=0 = h|t=0 ∈ J.

Similarly,
f = f |t=1 = g|t=1 + h|t=1 = g|t=1 ∈ I.

We conclude that f ∈ I ∩ J . �

Note that Proposition 4.3.3 provides an algorithmic way to compute generators
of I ∩ J via elimination.
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4.3.3. Difference of varieties: colon ideal. The difference of two varieties
V and W is not a variety in general: for instance take V = V(x) and W = V(y)
as varieties in k2. Then V \W = V \ {(0, 0)} is not Zariski closed: V \W = V as
every polynomial that vanishes on V \W must vanish on {(0, 0)} as well.

A good questions is: how to find V \W in general?
The answer is not hard to give if one can construct an irreducible decomposition

V = V1 ∪ · · · ∪ Vr.

In this case,

V \W =
⋃

{ i |Vi 6⊆W }

Vi.

In algebraic language (without resorting to decomposition algorithms), the con-
struction of colon ideal (also called quotient ideal) provides an answer. Let I, J ⊆ R
be ideals, define

I : J = { f ∈ R | fJ ⊆ I } .

Exercise 4.3.4. Show that I : J is an ideal.

Proposition 4.3.5. If I, J ⊆ R and I is a radical ideal, then

V(I) \ V(J) = V(I : J).

Moreover, I
(
V(I) \ V(J)

)
= I : J .

Proof. Let V = V(I) = V1 ∪ · · · ∪ Vr be the irreducible decomposition, W =
V(J), and set

V ′ =
⋃

{ i |Vi 6⊆W }

Vi.

Taking f ∈ I : J we can show that f vanishes on all Vi 6⊆ W : pick a polynomial
g ∈ J such that g /∈ I(Vi) then fg ∈ fJ ⊆ I. Since g does not vanish on Vi, the
polynomial f has to.

On the other hand, take f ∈ I(V ′) then fg ∈ I for every g ∈ J and, hence,
f ∈ I : J . �

Exercise 4.3.6. If I = 〈f1, . . . , fr〉 and J = 〈g〉 one can compute the
generators hi of the intersection,

I ∩ J = 〈h1, . . . , hs〉 .
Show that I : J = 〈h1/g, . . . , hs/g〉 .

Exercise 4.3.7. Show that I : (J + K) = (I : J) ∩ (I : K) for any ideals
I, J,K.

The exercises above give a way of constructing generators of I : J algorithmi-
cally for any I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉:

(1) compute generators of Ki = I : 〈gi〉 using the conslusion of Exercise 4.3.6,
(2) compute generators of K1 ∩ · · · ∩Ks.
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The output of the second step is generators of I : J by Exercise 4.3.7.
Note: One can find algorithmically V(I) \ V(J) without the assumption of radicality of
I that Proposition 4.3.5 makes. To that end, one needs to compute the saturation of I
with respect to J ,

I : J∞ = { f ∈ R | fJm ⊆ I for some m } .
The saturation ideal I : J∞ is the ideal at which the chain

I : J ⊆ I : J2 ⊆ I : J3 ⊆ · · ·

stabilizes.

4.3.4. Projection of variety: intersection with a subring. Define πm :
kn → km to be the projection map that sends (x1, . . . , xn) to (x1, . . . , xm).

Proposition 4.3.8. Let V = V(I) ⊆ kn be a variety given by some ideal
I ⊆ k[x1, . . . , xn].

Then πm(V ) = V(Im), where Im = I ∩ k[x1, . . . , xm].

Proof. A point (a1, . . . , am) ∈ πm(V ) clearly satisfies all polynomials in I ∩
k[x1, . . . , xm]. Hence, πm(V ) ⊆ V(I)

Let f ∈ I(πm(V )) then f ∈ I(V ) =
√
I. Since I(πm(V )) ⊆

√
I, the inclu-

sion reversing property of ideal-variety correspondence (Exercise 4.1.2) implies that
V(I) ⊆ πm(V ). �

Note that this proposition makes the closure of the projection of a variety
computable via elimination.

Projections of varieties (more generally images of varieties under algebraic
maps) are not Zariski closed.

Example 4.3.9. Consider V = V(xy − 1) ⊂ k2. The projection πx(V ) to the
coordinate x is the set k \ {0}, which is not Zariski closed.

Note: In fact, projections of varieties (more generally, images of varieties under algebraic
maps) are constructible sets, i.e., sets of the form

V = (V1 \W1) ∪ · · · ∪ (Vr \Wr),

where Vi and Wi are Zariski closed.


