Algebraic Geometry: additional exercises (due Nov 30)

The projective Grassmaniann $\mathbb{G}(M-1, N-1)$, the set of projective $(M-1)$-planes in \mathbb{P}^{N-1}, is isomorphic to $\operatorname{Gr}(M, N)$.

1. Consider \mathbb{P}^{3} with the graded coordinate ring $k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$. Let $C \subset \mathbb{P}^{2} \simeq\left\{x_{3}=0\right\} \subset$ \mathbb{P}^{3} be the plane conic

$$
C=\mathbb{V}\left(x_{3}, x_{0} x_{2}-x_{1}^{2}\right)
$$

Find defining equations of the variety $\mathcal{C}_{1}(C) \subset \mathbb{G}(1,3)$ of incident (projective) lines. (Hint: $\mathcal{C}_{1}(C)=\pi_{1}\left(\pi_{2}^{-1}(C)\right.$), where $\pi_{1}: \Sigma \rightarrow \mathbb{G}(1,3)$ and $\pi_{2}: \Sigma \rightarrow \mathbb{P}^{3}$ where

$$
\Sigma=\{(\ell, x) \mid x \in \ell\} \subset \mathbb{G}(1,3) \times \mathbb{P}^{3}
$$

is the incidence variety.)
2. Do the same for the image of $t \mapsto\left[1, t, t^{2}, t^{3}\right] \in \mathbb{P}^{3}$ (twisted cubic).

