Algebraic Geometry: additional exercises (due Sep 7)

1. Let $\phi: \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ be an automorphism of teh affine space \mathbb{A}^{n} with the coordinate ring

$$
k\left[\mathbb{A}^{n}\right]=k[\boldsymbol{x}]=k\left[x_{1}, \ldots, x_{n}\right] .
$$

Define the Jacobian map

$$
J(\phi): \mathbb{A}^{n} \rightarrow \mathbb{A}^{n \times n}
$$

(think: $\mathbb{A}^{n \times n}=\{$ square matrices $\}$) as

$$
J(\phi)_{i j}=\frac{\partial \phi_{i}}{\partial x_{j}} \in k[\boldsymbol{x}], i, j=1, \ldots n .
$$

Show that if ϕ is an isomorphism then

$$
\operatorname{det} J(\phi): \mathbb{A}^{n} \rightarrow \mathbb{A}^{1}
$$

is a nonzero constant map.
2. Given a rational map

$$
\rho: V--\rightarrow W
$$

consider its graph

$$
\Gamma_{\rho}=\overline{\{(\boldsymbol{x}, \rho(\boldsymbol{x}) \mid \boldsymbol{x} \in V \backslash \Sigma(\rho)\}} \subset V \times W
$$

Show that the natural projection (on the first coordinate)

$$
\pi: \Gamma_{\rho}--\rightarrow V
$$

(together with ρ) gives a birational equivalence of V and Γ_{ρ}.

