Algebraic Geometry: additional exercises (due Sep 28)

1. If f and g are polynomials of the same degree d,

$$
f=\sum_{k=0}^{d} a_{k} x_{k}, g=\sum_{l=0}^{d} b_{l} x_{l},
$$

then the following method for computing the resultant is often used. Compute the following polynomial in two variables, which is called the Bézoutian:

$$
B(x, y)=\frac{f(x) g(y)-f(y) g(x)}{x-y}=\sum_{i, j=0}^{d-1} c_{i j} x^{i} y^{j} .
$$

The entries of the symmetric $d \times d$-matrix $C=\left(c_{i j}\right)$ are sums of expressions $a_{k} b_{l}-a_{l} b_{k}$. The Bézout resultant is defined as the determinant of C. Prove that it equals the Sylvester resultant $\operatorname{Res}(f, g)$.

