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Abstract. Our Maple package PHCmaple came to existence in 2004
when it provided a convenient interface to the basic functionality of
phc, a program which is a part of PHCpack and implements numeric
algorithms for solving polynomial systems using polynomial homotopy
continuation. Following the recent development of PHCpack the package
has been extended with functions that deal with singular polynomial sys-
tems, in particular, the deflation procedures that guarantee the ability
to refine approximations to an isolated solution even if it is multiple.
We see PHCmaple as a part of a larger project to integrate a numerical
solver in a computer algebra system.

1 Introduction

In its current state PHCmaple is an interface to phc (polynomial homotopy
continuation), a program to solve polynomial systems, which is part of PHCpack
[11].

Polynomial systems occur frequently in various models of science and engi-
neering. There exist various symbolic methods for finding the exact solutions
of such systems. However, these methods are of high complexity and, therefore,
might not be a good choice, especially in the situation where one would be
satisfied with numerical approximations to the solutions.

Homotopy continuation methods (see e.g. [1], [6], and [8]) constitute a class
of efficient symbolic-numerical solvers that produce such approximations. The
nature of continuation methods lies in a repeated application of Newton’s method
in order to follow continuation paths. A homotopy method creates a family
of polynomial systems (i.e.: the homotopy), linking the system to be solved
with a so-called start system whose solutions are easy to find. For efficiency,
polynomial homotopy methods exploit the structure of the polynomials in the
system considering the polynomials not merely as functions as other continuation
methods do. It is this aspect that makes application of a homotopy method a
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symbolic-numerical operation and is a cornerstone in the foundation of numerical
algebraic geometry. One good recent book on the subject is [10].

The package PHCpack implements various homotopy techniques to approxi-
mate all isolated complex roots of a polynomial system. The first release of the
source code is documented by [11]. In [9], there is a description of recent ex-
tensions to PHCpack to deal with positive dimensional solution sets. PHCpack
contains the source code to build the program phc, available for various plat-
forms: Sun workstations running Solaris, MacOS X computers, PCs under Linux
and Windows.

Maple itself does not need an introduction. This computer algebra system is
instrumental in setting up mathematical models in order to derive and formulate
the polynomial equations. Equally important is the analysis and visualization of
the results obtained by a solver. We see the interaction with computer algebra not
only as natural, but also vital in the solving process. A simple Maple procedure,
operating as a shell around the blackbox solver of PHCpack, was first presented
in [9]. In PHCmaple we implement a much more elaborate interface shaped as
a Maple package. PHCmaple provides format conversions to bring systems and
solutions from Maple into phc and from phc into Maple. The interface gives
access to most of the functions implemented in PHCpack.

Besides a useful application of computer algebra system, an important re-
search direction in recent years has been the application of numerical methods
to the classical problems of symbolic computation. The numerical irreducible
decomposition is one of the major highlights. With the recent implementation
of the deflation algorithms, now an even more challenging task is at reach – nu-
merical primary decomposition, which would recover embedded components of
the solution set as well as the maximal ones and also compute the multiplicities
of the components. The deflation methods became the most recent acquisition
of PHCmaple.

2 Evolution of Interfaces to PHCpack

In this section we briefly describe the chronological evolution of the interfaces
to the capabilities in PHCpack.

1. OpenXM [7] calls the blackbox solver. The first interface is still avail-
able via OpenXM (Open message eXchange protocol for Mathematics) and
only needs an executable file of the program. Just as one calls the blackbox
solver of PHCpack as phc -b input output, a simple system call achieves
the same effect.

2. A simple Maple procedure calls the blackbox solver. On [9, page 114],
a simple Maple 7 procedure (less than 20 lines long) applies the experience
of the first interface.

3. A functional C interface to the Ada routines in PHCpack. To process
the output of the Pieri homotopies in PHCpack to compute feedback laws
to control a linear system, a dedicated C interface was written, used in [12]
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and described in an online appendix (available at the second author’s web
site). The main C program calls the Ada routines in PHCpack which then
call another C function to process the output.

4. PHCmaple gives access to the tools of phc. The main executable pro-
gram of PHCpack can be used as a blackbox or as a toolbox, calling the
program with the appropriate options and selecting the desired actions from
the menu. Via input redirections, it also just takes the executable version to
gain access to the tools offered by PHCpack. In [3], we presented PHCmaple,
a Maple interface to PHCpack.

5. Using PHCpack as a state machine. The dedicated C interface was not
adequate for the parallel implementation of the path tracking routines in
PHCpack. Therefore, a new interface was developed for use in [13], [4, 2]
and [14].
The Ada function use c2phc

function use_c2phc ( job : integer;
a : C_intarrs.Pointer;
b : C_intarrs.Pointer;
c : C_dblarrs.Pointer ) return integer;

is available to the C programmer as

extern void adainit( void );
extern int _ada_use_c2phc ( int job, int *a, int *b, double *c );
extern void adafinal( void );

The first parameter job specifies the action requested from phc. The meaning
of the other parameters a, b, and c depends on the job.

The chronological evolution pictures two distinct trends in interfacing with
PHCpack: (1) using the executable originated with OpenXM; and (2) calling the
compiled code.

3 Overview of PHCmaple

PHCmaple is available for download at www.math.uic.edu/~leykin/PHCmaple/
and works with Maple version 8 or higher.

The goal of PHCmaple is to provide computer algebra users with a convenient
interface to the

– blackbox solver of phc;
– homotopy path tracking facilities;
– deflation procedure;
– routines that create and manipulate witness sets for positive-dimensional

components;
– factorization/decomposition capabilities of phc.
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Using the following procedures one can deal with isolated solutions of square
systems (with a finite number of solutions): to run the black-box solver execute
solve, which returns approximations to all complex isolated roots of a square
system; refines the solutions to any specified precision with refine, which also
provides a way to set certain parameters in order to fine-tune the solver; track
a subset of the solutions set of the start system to the corresponding solutions of
the target system and visualize the results with drawPaths; for singular isolated
solutions one might consider applying deflationStep, the implementation of
the first-order deflation procedure [5], which given a polynomial system and an
approximation to one of its multiple isolated solutions produces a new system
of equations that has the same solution, but with lower multiplicity.

The positive-dimensional solution sets of general polynomial systems can be
represented by means of witness sets, computing which reduces the problem to
the isolated solution case.

The following functions of PHCmaple serve this purpose: construct an em-
bedded system with embed in assumption that the dimension of its solution set
is known; cascade runs the so-called cascade of homotopies for an embedded
system, it computes the list of witness sets for the components of the solu-
tion set in every dimension; after producing the witness sets filter the points
in lower-dimensional witness sets belonging to higher-dimensional components;
to produce a numeric irreducible decomposition of a pure-dimensional solution
component decompose its witness set; absolute factorization capability for mul-
tivariate polynomial is given by factor.

4 Development details and future prospects

At this moment PHCmaple operates by making system calls in order to launch a
standalone process containing phc, the PHCpack executable. The current imple-
mentation was carefully tested on Windows versions up to Maple 10 and shows
robust performance. However, the same experiments on Maple for Linux/Unix
exhibited flaws in the mechanism of making external system calls.

In the future, the authors plan to part with this interfacing strategy in favor of
a more efficient approach: calling PHCpack functions directly from a dynamical
library. The current work on the C bindings for PHCpack (originally coded in
Ada) makes the first step towards creation of such a library.

Apart from Maple our future plan is to look into creating an interfaces with
the non-commercial computer algebra systems like Axiom and Macaulay 2 as
well as tools for numerical computation like Octave and Scilab. We also find
interesting the work of Joris Van der Hoeven on Mathemagix that promises to
be “a bridge between symbolic computation and numerical analysis or symbolic
computation”.
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