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Abstract

Our Maple package PHCmaple provides a convenient interface to the functions of PHCpack,
a collection of numeric algorithms for solving polynomial systems using polynomial homotopy
continuation, which was recently extended with facilities to deal with positive dimensional so-
lution sets. The interface illustrates the benefits of linking computer algebra with numerical
software. PHCmaple serves as a first step in a larger project to integrate a numerical solver in
a computer algebra system.

1 Introduction

PHCmaple is an interface to phc (polynomial homotopy continuation), a program to solve polyno-
mial systems, which is part of PHCpack [19].

Solving polynomial systems is a fundamental problem which occurs frequently in various models
of science and engineering. Homotopy continuation methods (see e.g. [1], [8], and [9]) are a class
of reliable and efficient symbolic-numeric solvers. Continuation methods are numerical as they
repeatedly apply Newton’s method to achieve global convergence. A homotopy method creates a
family of polynomial systems (i.e.: the homotopy), linking the system to be solved with a so-called
start system whose solutions are known, or easier to find. For efficiency, homotopy methods must
exploit the structure of the polynomials in the system and consider the polynomials not merely as
functions as continuation methods do. So we may regard the application of a homotopy method as
a symbolic operation.

The package PHCpack implements various homotopy techniques to approximate all isolated
complex roots of a polynomial system. The first release of the source code is documented by [19].
In [16] is a description of recent extensions to PHCpack to deal with positive dimensional solution
sets. PHCpack contains the source code to build the program phc, available for various platforms:
Sun workstations running Solaris, MacOS X computers, PCs under Linux and Windows.

Maple itself does, of course, not need an introduction. In most realistic applications, computer
algebra is needed to derive and formulate the polynomial equations. And equally important is the
analysis and visualization of the results obtained by a solver. So the interaction with computer
algebra is not only natural, but also vital in the solving process. A simple Maple procedure,
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operating as a shell around the blackbox solver of PHCpack, was first presented in [16]. In this
paper, we describe a more elaborate interface, implemented using a module which allows to use
this interface like a Maple package. PHCmaple provides format conversions to bring systems and
solutions from Maple into phc and from phc into Maple. The interface gives access to the main
functions implemented in PHCpack.

Besides a useful application of computer algebra, an important research direction in recent years
has been the application of numerical methods to deal with problems of symbolic computation,
like the approximate GCD for instance, for more, see [18]. One important task in dealing with
positive dimensional solution sets involves the decomposition into irreducible components. For one
polynomial in several variables, this task specializes to the so-called absolution factorization, which
has received a lot of attention in computer algebra lately. Our package PHCmaple is a modest step
towards the practical integration of a numerical solver in a computer algebra system.

This paper is organized in two parts. We first present the facilities in PHCmaple to deal with
approximate complex isolated roots before listing the functions to deal with positive dimensional
solution sets.

2 Isolated Solutions of Polynomial Systems

The core of PHCpack contains a powerful robust engine for computing approximations to all complex
isolated solutions of a square (i.e.: as many equations as unknowns) polynomial system. PHCmaple
provides access to the blackbox solver of PHCpack, in addition to the root refiner and path tracker.
One nice feature of PHCmaple is the procedure drawPaths which visualizes the homotopy continu-
ation method.

As a running example, consider the following system of two equations in two variables:
{

x2 + y2 − 1 = 0
x3 + y3 − 1 = 0.

(1)

It has four solutions:
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These are the exact solutions. With PHCmaple we will obtain numerical approximations for the
solutions of (1). First we must load the phc.module and define the location of the executable version
on our system, as done on the first line below:

> with(phc): setPHCloc("C:\\CODE\\MAPLE\\phc"):

> T := makeSystem([x,y], [], [x^2+y^2-1, y^3+x^3-1]):

The command in the previous line assigned to T the system in (1). In the following subsections,
we show how to solve the system and refine the solutions to arbitrary precision. Then we give an
example of the path tracker and illustrate the facility to draw paths.

2.1 phc[solve]

The simplest (to use) function of PHCpack is the blackbox solver, which, given a square polynomial
system, returns a list of approximations for the complex isolated roots of the system. No other
input is required from the user. The blackbox solver uses default values for the tolerances and
parameters in the continuation and does not request the assistance of the user in the selection of
the start system in the homotopy – see [19] for the details of the blackbox solver in PHCpack.

Below, we show how the corresponding PHCmaple function solve is called for our example.
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> sols := solve(T): printSolutions(T,sols):

(1) [x = -1.0-.707106781186548*I, y = -1.0+.707106781186548*I]

(2) [x = -1.0+.707106781186547*I, y = -1.0-.707106781186548*I]

(3) [x = .279457787737754e-6+.217714179751182e-6*I, y =
1.0+.542516561071245e-19*I]

(4) [x = 1.0+.361738783176125e-20*I, y =
.340643163100248e-6+.779553989101843e-8*I]

(5) [x = 1.0+.190718110222908e-18*I, y =
-.48510524311408e-6+.21712658445583e-6*I]

(6) [x = -.430219446274724e-6+.401671773723477e-7*I, y =
1.0+.296514987452363e-19*I]

Every solution returned by phc comes with three attributes: err is the magnitude of the last
correction term of Newton’s method; rco is an estimate for the inverse condition number of the
Jacobian matrix at the root; and res is the norm of the solution evaluated at the system. For
example, for the first solution of the list sols, these three attributes can be retrieved as follows:

> sols[1]:-err; sols[1]:-rco; sols[1]:-res;

0.1570 10−15

0.1921
0.8882 10−15

To see the err attribute for all solutions, we may proceed as follows:
> map(s->s:-err,sols);

[0.1161 10−15, 0.1161 10−15, 0.4846 10−6, 0.7098 10−6, 0.5797 10−6, 0.6599 10−6]
From the list of err attributes we see that the last four ones are not as small as the first two ones.
An explanation for this can be seen from the estimates for the inverse condition numbers:

> map(s->s:-rco,sols);

[0.1921, 0.1921, 0.2295 10−6, 0.1539 10−6, 0.2295 10−6, 0.2171 10−6]
While the first two solutions have low estimates for the condition numbers, the four last condition

numbers indicate that the last six decimal places of the last four solutions may be erroneous. Looking
at the list of six solutions more closely, we see that the last four solutions appear in two pairs of
two close solutions, close to (1, 0) and (0, 1) – compare to the sequence of exact solutions in (2).

2.2 phc[refine]

We can make the radius of a cluster of approximate roots around a singularity as small as we like
by applying Newton’s method to the list of solutions. Among the options passed to refine the
user can specify the number of computed decimal places, error tolerance, residual tolerance, the
tolerance for singular solutions and the maximal number of iterations in the Newton method.

> refsols :=
> refine(sols,T,digits=32,residual_tol=1e-30,error_tol=1e-30,singular_
> tol=1e-20,max_iterations=30):

> printSolutions(T,refsols);

(1) [x = -1.0-.70710678118654752440084436210487*I, y =
-1.0+.70710678118654752440084436210487*I]

(2) [x =
-.99999999999999999999999999999999+.70710678118654752440084436210484*I
, y = -1.0-.70710678118654752440084436210486*I]
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(3) [x =
.5205306546258975757408672784475e-15+.40552410972977444517883039027289
e-15*I, y = 1.0+.3505927241699136526923965746685e-45*I]

(4) [x = 1.0+.2338568649677147242777207000165e-46*I, y =
.63431698580416056902491862863394e-15+.1452444158759210076552664246326
2e-16*I]

(5) [x = 1.0+.1552688703302692381783873561629e-45*I, y =
-.45016560336118588358467402009776e-15+.202939621089520760569377491202
32e-15*I]

(6) [x =
-.80134639254142622225381788624168e-15+.748172410079813982038502708816
46e-16*I, y = 1.0+.1916189751539815163261542576703e-45*I]

We see that the condition numbers of the last four solutions become worse as we approach the
true singularities, as the err attributes become smaller.

> map(s->s:-rco,refsols);

[0.1921, 0.1921, 0.4274 10−15, 0.2866 10−15, 0.2135 10−15, 0.4043 10−15]
> map(s->s:-err,refsols);

[0.3142 10−30, 0.3735 10−30, 0.9260 10−15, 0.6492 10−15, 0.6555 10−15, 0.8761 10−15]
As we see from the result of the refine that (1, 0) and (0, 1) are each approached by two lll-

conditioned solutions, we can conclude that (1, 0) and (0, 1) occur each with multiplicity two. So
counted with multiplicity, system (1) has six roots.

2.3 phc[track]

One may use track to control what start system is used for the continuation. The function takes
the start and the target systems as parameters as well as a, possibly partial, list of solutions to the
start system. It tracks the paths starting at these solutions outputting the corresponding solutions
of the target system.

In our example we take the start system where each equation of the target system is matched
with the equation of the same degree in one variable, such that its solutions are the roots of unity.
The total number of solutions to such a system is exactly the Bézout number for the target system.

> S := makeSystem([x,y], [], expand((1+I)*[x^2-1, y^3-1])):

The 1+I multiplication factor in the start system is used to avoid singular points along the solution
path defined by the homotopy. Normally, we would choose a complex number which is somewhat
more random than 1+I.

> rt := evalf(-0.5+sqrt(3)/2*I): # principal cubic root of 1
> startSolutions := [makeSolution([1,1]), makeSolution([-1,1]),
> makeSolution([1,rt]),makeSolution([-1,rt]),
> makeSolution([1,rt^2]), makeSolution([-1,rt^2])]:

> L := track(T,S,startSolutions,20):

If the optional last parameter is specified and is equal to n, then track subdivides the continu-
ation paths in n parts, thus computing n− 1 intermediate points on each of them. We will use the
L from above in DrawPaths below.

2.4 phc[drawPaths]

The output of track can be used to sketch the continuation paths via drawPaths. For each variable,
this function makes plots of the projections of continuation paths onto the corresponding complex
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plane.
> R := drawPaths(L,S):
> plots[display](R[1]);
> plots[display](R[2]);

variable: x
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Figure 1: The output of drawPaths. The light disks indicate the start solutions, while the target
solutions are marked by dark disks.

3 Positive Dimensional Solution Sets

We represent a k-dimensional solution set of a system by adding k random hyperplanes to the
system. The isolated solutions of this augmented system are generic points and their cardinality is
as many as the degree of the solution set. This augmented system with these generic points forms
a so-called witness set for the k-dimensional solution set. A witness set is the basic data structure
in a numerical irreducible decomposition [12].

A running example for this section is the system of three equations in three variables:




x2 + y2 + (z − 1)2 − 1 = 0
(z − 0.5)(z − 1)y = 0
(z − 0.5)(z − 1)x = 0.

(3)

Its solution set (see Figure 2 for the picture in the real space) consists of two isolated points, which
are the intersection of the sphere and the line x = y = 0, as well as two one-dimensional irreducible
curves: the two circles produced by slicing the sphere with the planes z = 1 and z = 0.5.

3.1 phc[embed]

The case of the positive dimension is reduced to the zero dimensional case by embedding the system,
i.e.: by adding as many random hyperplanes as the dimension of the solution set. We can always
obtain a square system by the addition of so-called slack variables. This embedding was proposed
in [11].

The function embed creates an embedded system, which is one of the ingredients in a witness
set for a k-dimensional solution set. Besides the original polynomial system, it is the responsibility
of the user to provide embed with the expected top dimension of its solution set as the second
parameter.
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Figure 2: The zero set of the system (3) consists of two circles and two isolated points.

> sys := makeSystem([x,y,z],[],[x^2+y^2+(z-1)^2-1,
> (z-0.5)*(z-1)*y,(z-0.5)*(z-1)*x]):

> embsys := embed(sys,1):

> embsys :-vars;

[x, y, z]
> embsys :-slacks;

[zz1 ]
> printSystem(embsys):

(1) x^2+y^2+z^2-2*z+.722061869022232*zz1-.691828488358293*I*zz1

(2)
y*z^2-1.50000000000000*y*z+.500000000000000*y+.676798806780202*zz1-.73
6168034582387*I*zz1

(3)
x*z^2-1.50000000000000*x*z+.500000000000000*x+.388610077788065*zz1+.92
1402304881833*I*zz1

(4)
.639493055710925*x+.768796872845815*I*x+.331649046286345*y-.9434028355
35996*I*y-.126120769421903*z-.992014894807748*I*z+.768367525344066*zz1
-.640008863998488*I*zz1-.802750399628069+.596315181675744*I

3.2 phc[cascade]

We can now run solve to compute the solutions to the embedded system, which together with the
embedding form a witness set for the top dimensional component of the solution set of the original
system.

> embsols := solve(embsys):

The function cascade launches the so-called cascade of homotopies in order to compute witness
sets for the solution components in every dimension. This cascade was first presented in [11].
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> comps := cascade(embsys,embsols):

> dim0 := comps[1]: dim1 :=comps[2]:

The result is a list of witness sets representing the equidimensional decomposition of the variety.
In our example we have two components: of dimensions 0 and 1.

You may see that we obtained 6 points in dimension 0:
> printSolutions(dim0:-system,dim0:-points);

(1) [x = 0, y = 0, z = 2.0]

(2) [x = 0, y = 0, z = 0]

(3) [x = -.923027707251813+.593279148760967*I, y =
.923027707251813+.593279148760967*I, z = 1.0+.481482486096809e-34*I]

(4) [x = -.799365442876975+.513794814362604*I, y =
.799365442876975+.513794814362604*I, z = .50-.137297740176043e-33*I]

(5) [x = .923027707251812-.593279148760966*I, y =
-.923027707251812-.593279148760966*I, z = 1.0+.188079096131566e-36*I]

(6) [x = .799365442876975-.513794814362604*I, y =
-.799365442876976-.513794814362604*I, z = .50+.700649232162409e-45*I]

However, there are clearly only two isolated solutions! Where do the other four come from?

3.3 phc[filter]

The points we find at the end of the paths in the cascade form a witness superset. Some points
may belong to higher dimensional components and not to the current component in the cascade.
Therefore, we have to filter out these junk points. If we know that the current component has
multiplicity one, then this filtering can be done by a mere inspection of the condition number
at the end of the paths, as the points on higher dimensional components are singular, and thus
ill conditioned. The filtering facility filter calls the routine of PHCpack that uses the so-called
homotopy membership test, as derived in [13].

> dim0f := filter(dim1, dim0):

> printSolutions(dim0f:-system,dim0f:-points);

(1) [x = 0, y = 0, z = 2.0]

(2) [x = 0, y = 0, z = 0]

3.4 phc[decompose]

Once we have a witness set for all positive dimensional solutions sets of a polynomial system, we
are interested in the irreducible decomposition. For every irreducible component, we would like one
witness set. The decomposition of a witness set is predicted by monodromy [14] and certified by
the linear trace [15].

Below we use PHCmaple’s decompose to find the irreducible one-dimensional components of
degree two.

> printSolutions(dim1:-system,dim1:-points);

(1) [x = -.685502648680706-1.0493407160131*I, y =
-1.2991446273126+.5536918870099*I, z = .50+.464208177178903e-16*I,
zz1 = .283451800337563e-16+.423353079656887e-16*I]
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(2) [x = -1.01896486399796-1.33092346330283*I, y =
-1.57349962005932+.86187770780964*I, z =
1.0-.906089000592713e-16*I, zz1 =
.801744344776168e-16+.104102228345155e-15*I]

(3) [x = 1.24838627747489-.59841477216379*I, y =
.808428382967238+.924080358318904*I, z =
1.0+.259880445936573e-15*I, zz1 =
.130604196067113e-15+.135595403619785e-15*I]

(4) [x = 1.04530104586469-.375339338250658*I, y =
.551560327114017+.711332167200034*I, z =
.50-.130819268578456e-15*I, zz1 =
.525404099686002e-16+.517037529448153e-16*I]

> irr1 := decompose(dim1): nops(irr1);

2
These are, indeed, the two circles, each represented with a 2-point witness set.

> printSolutions(irr1[1]:-system,irr1[1]:-points);

(1) [x = -.685502648680706-1.0493407160131*I, y =
-1.2991446273126+.5536918870099*I, z = .50+.464208177178903e-16*I,
zz1 = .283451800337563e-16+.423353079656887e-16*I]

(2) [x = 1.04530104586469-.375339338250658*I, y =
.551560327114017+.711332167200034*I, z =
.50-.130819268578456e-15*I, zz1 =
.525404099686002e-16+.517037529448153e-16*I]

> printSolutions(irr1[2]:-system,irr1[2]:-points);

(1) [x = -1.01896486399796-1.33092346330283*I, y =
-1.57349962005932+.86187770780964*I, z =
1.0-.906089000592713e-16*I, zz1 =
.801744344776168e-16+.104102228345155e-15*I]

(2) [x = 1.24838627747489-.59841477216379*I, y =
.808428382967238+.924080358318904*I, z =
1.0+.259880445936573e-15*I, zz1 =
.130604196067113e-15+.135595403619785e-15*I]

3.5 phc[factor]

A particular case of the problem of numerical decomposition is that of decomposing a hypersurface
or, in other words, factoring a multivariate polynomial. PHCpack is equipped with a function that
treats this special case, see [17] for a description of the algorithms. In PHCmaple, it is called factor:

> f := factor(z*x-z*y);

f := [0.720227296223279 10−16 x + 0.211865299121440 10−15 I x + z

+ 0.727428125630827 10−16 + 0.149806122770695 10−15 I, x

+ 0.201713788067337 10−15 z + 0.184128102532389 10−15 I z

− 1.00000000000000 y + 0.109119260262696 10−15 I y

+ 0.871486557602219 10−17 − 0.177034993342480 10−15 I]
The Maple command fnormal is very useful to remove tiny errors in the output:

> fnormal(f);

[z, x− 1.000000000 y]
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We must point out that the problem of the absolute factorization of polynomials with approx-
imate coefficients has received a lot of research attention, e.g.: [2], [3], [4], [5], [6], [10], since this
problem was listed as one of the open challenge problems in [7].

4 Download and Install

PHCmaple has been developed under Windows in the classic worksheet version of Maple 9. In
principle, it ought to work with Maple version 8 and higher on most platforms. PHCmaple is
available for download at www.math.uic.edu/~leykin/PHCmaple/. This web page also contains
the installation instructions and online help pages for the package.

The purpose of PHCmaple is to make the homotopy continuation tools of PHCpack available
from a general purpose computer algebra system Maple. This package is also the first step of a
larger project aimed at creating hybrid symbolic-numeric software for polynomial system solving.
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