
On parallel computation of Gröbner bases

Anton Leykin
Dept. of Math., Stat., and Comp. Science

University of Illinois at Chicago
leykin@math.uic.edu

Abstract

We have developed a coarse-grain parallelization of the
Buchberger algorithm for computing Gröbner bases in al-
gebras of linear differential operators. The implementation
of this algorithm provides good speedups on the majority
of examples coming from these noncommutative algebras,
which are superior to the speedups achieved for (commuta-
tive) polynomial rings.

1 Introduction

Algorithms for computing Gr̈obner bases have become a
standard hard problem for computer scientists, since their
complexity is proved to have a sharp double exponential
bound. That is in the case of (commutative) polynomials;
if one considers, for example, the Weyl algebra, this com-
plexity is not known, though it is guaranteed to be worse.

As parallel computation becomes standard and super-
computing facilities more accessible, we turn our attention
to parallelization of Gr̈obner bases computations. This topic
has been explored both by mathematicians and computer
scientists (see [1], [9], [11], [3]) for Gröbner bases in rings
of (commutative) polynomials. Also, there was work done
in this direction in more specialized settings (e.g. see [10]).

At the beginning of the project, on top of aiming at
constructing a practical implementation of a parallel Buch-
berger algorithm, we were especially interested in comput-
ing Gröbner bases in algebras of linear differential oper-
ators. For these algebras the elementary operations (e.g.
multiplication of differential operators) are more expensive
than in case of polynomials, also there are no elaborate tech-
niques (e.g. see [4]) developed for eliminating the unneces-
sary s-pairs (ones that reduce to 0), hence, optimizing the
Buchberger algorithm. These observations made us believe
that parallelization in the noncommutative case would yield
better results compared to the commutative one for two rea-
sons:

1. The cost of a reduction step dominates the cost of com-
munication.

2. Updates to the basis are not often because of a larger
number of 0-reductions.

Our instincts have not betrayed us. Our implementation
– coded in C++ using MPI [7] for communication interface
– displays speedups that on average are better in a noncom-
mutative setting than in a commutative one.

2 Preliminaries

In this chapter we shall deal with associative algebras
of polynomial type over a fieldk. In constructing those
we use the variablesxi, ∂i, si, ti wherei ∈ Z that satisfy
the following relations:[∂i, xi] = 1, [si, ti] = ti, where
[a, b] = ab − ba, and all the pairs of variables that are not
mentioned above commute.

Using these variables we can describe the Weyl algebra
An = k〈x1, ..., xn, ∂1, ..., ∂n〉. Another algebra we used for
our experiments is the so-called PBW algebra (see [2])

Pn,p = An〈s1, ..., sp, t1, ..., tp〉
= k〈s1, ..., sp, t1, ..., tp, x1, ..., xn, ∂1, ..., ∂n〉.

If we fix the order of the variables, each element of any
algebra allowed by the above description can be written
uniquely as a polynomial with monomials with variables
written in the specified order: we call this polynomial the
normal form. For computational purposes we would as-
sume that we always operate with algebra elements in the
normal form. According to [8] our algebras are ofsolvable
type, i.e. are eligible for Gr̈obner bases techniques similar
to the ones in the ring of polynomials.

In what follows we describe a simple version of the
Buchberger algorithm, which is a (sequential) completion
algorithm used to compute Gröbner bases.

Let A = k〈z〉 = k〈z1, ..., zn〉 be an associative algebra
where variableszi have names from the list at the beginning



of the section and are subject to the corresponding relations.
Let f be an element ofA having the normal form

f =
∑

α∈Zn
≥0

aαzα,

where all but a finite number ofaα equal0. Denote by
inM(f) and inC(f) the initial monomial and initial coef-
ficient of f , call in(f) = inC(f)inM(f) the initial term
of f . For a left idealI ⊂ A we define aninitial ideal
in(I) = A · {in(f) | f ∈ I}.

A generating setG of a left idealI ⊂ A is called a
Gröbner basis if in(I) = A {in(g) | g ∈ G}.

Given a polynomialf ∈ A and a finite subsetB ⊂ A we
can perform reduction as follows:

Algorithm 1 f ′ = REDUCE(f, B)
f ′ := f
WHILE there isg ∈ B such that inM(g) divides inM(f ′)

Setf ′ := f ′ − (in(f ′)/in(g))g
END WHILE

For two polynomialsf, g ∈ A we define the s-
polynomial

sPoly(f, g) = inC(g)
l

inM(f)
f − inC(f)

l

inM(g)
g,

where l = lcm(inM(f), inM(g)). Then an alterna-
tive definition could be given as follows: A generat-
ing set G of a left ideal I ⊂ A is a Gr̈obner basis if
REDUCE(sPoly(f, g), G) = 0.

The following is a sketch of the simplest completion al-
gorithm known as Buchberger algorithm.

Algorithm 2 G = BUCHBERGER(B)
G := B, S := {(f, g)|f, g ∈ B, f 6= g}
WHILES 6= ∅ do

Pick (f, g) ∈ S according to the “strategy”
S := S \ {(f, g)}
h := REDUCE(sPoly(f, g), G)
IF h 6= 0

S′ := {(h, g)|g ∈ G}
Eliminate redundant s-pairs fromS andS′

according to “criteria”
S := S ∪ S′ andG := G ∪ {h}

END IF
END WHILE

Here “strategy” refers to an algorithm of determining which
s-pair to consider next; the most popular strategies are sort-
ing s-pairs either by total degree or by “sugar” degree (see
[6]).

“Criteria” are sets of rules helping to eliminate redun-
dant s-pairs, i.e. the ones that are guaranteed to reduce

to 0 under selected strategy. Most commonly used cri-
teria are the ones you may find in Gebauer-Möller [5].
Several of these criteria generalize for the noncommu-
tative setting, however, there are some that work only
in the commutative case. A simple example is the so-
called T-criterion: if gcd(inM(f), inM(g)) = 1 then
REDUCE(sPoly(f, g), {f, g}) = 0, which does not hold
for f = ∂ andg = x in the Weyl algebraA1.

3 Parallel Buchberger algorithm

As you may see, though we have a loop in the above
algorithm and theREDUCE tasks at each iteration seem
routine, these tasks are not independent of each other, since
the reduction basisG may change from one step to another.

On the other hand, it is not hard to imagine many s-
pairs in a row reducing to 0: if we knew ahead of time
that this would happen we could have assigned these rou-
tine 0-reductions to different processors. This point, in our
opinion, is the starting motivation for coarse-grain paral-
lelization of Buchberger algorithm.

What we developed is an algorithm similar to Attardi-
Traverso [1]. It uses a master-slave paradigm and dis-
tributed computing in the following way. Letn + 1 threads
be at our disposal, each assigned to a node with one pro-
cessor. Make one of the nodes the master and the rest the
slaves; the master can communicate with each of the slaves,
however, there is no communication between the slaves.
Each slave maintains a local copy of reduction basisB ∈ A
and is capable of completing two tasks: updating for the
basis upon reception of an update message from the master
and reducing a polynomialh ∈ A supplied by the master
with respect toB.

Algorithm 3 SLAVE
B := ∅
LOOP

IF RECEIVE (MASTER , h, update ) THEN
B := B ∪ {h}

END IF
IF RECEIVE (MASTER , h, reduce ) THEN

SEND(MASTER , REDUCE(h,B),
slaveDone )

END IF
END LOOP

Here SEND(THREAD, DATA, TAG) sends the mes-
sage tagged withTAG containingDATA to THREAD
and RECEIVE (THREAD,DATA, TAG) receives the
message withTAG containingDATA from THREAD.
SEND is nonblocking andRECEIVE returnsTRUE if the
message has been received. Note that, in practice, a slave is

2



terminated by a separate message from the master, but here
we prefer to use an infinite loop for simplicity.

Let us describe the master now. In what follows an s-
pair shall be represented by a quadruple(f, g, h, status)
containing two additional elements:h is a partially re-
duced s-polynomial sPoly(f, g) andstatus is eitherred
or nonRed depending on whether the s-polynomial has
been reduced completely orh may still be reduced with
respect to the current basisG. The variablemi stores the
s-pair that is being reduced bySLAVE i, i = 1, ..., n.

Algorithm 4 G = MASTER(B). Computes a Gr̈obner
basis of the left ideal generated byB ⊂ A using threads
SLAVE i, i = 1, ..., n.

FORi = 1, ..., n
mi := ∅
FOR everyg ∈ B

SEND(SLAVE i, g, update )
END FOR

END FOR
G := B
S := {(f, g, sPoly(f, g), nonRed)|f, g ∈ B, f 6= g}
WHILES 6= ∅ do

IF RECEIVE (SLAVE i, h, slaveDone ) THEN
Let (f, g, ..., nonRed) = mi

Replacemi with (f, g, h, red ) in S
mi := ∅

END IF
IF ∃mi = ∅ and

∃sp = (f, g, h, nonRed) ∈ S THEN
SEND(SLAVE i, h, reduce )
mi := sp

END IF
Letsp = (f, g, h, σ) be the first s-pair inS
IF σ = red THEN

Removesp fromS
IF h 6= 0 THEN

S′ := {(h, g, sPoly(f, g), nonRed)|g ∈ G}
Apply “criteria” to S andS′

S := S ∪ S′ andG := G ∪ {h}
ReorderS according to the “strategy”
FOR every(f, g, h′, red ) ∈ S

IF h dividesh′ THEN
status = nonRed

END IF
END FOR
FORi = 1, ..., n

SEND(SLAVE i, h, update )
END FOR

END IF
END IF

END WHILE

Notice that the presented algorithm clearly preserves the
strategy, since no modifications ofG andS are possible be-
fore the first s-pair in the queueS is completely reduced.
Of course, one may experiment with a variation of this al-
gorithm that takes a whatever pair in the queue with its s-
polynomial completely reduced to a nonzero and moves on
with these modifications, however, our test runs show that
in such cases results are highly unpredictable and the output
may heavily depend (in a random fashion) on the number of
slaves, architecture of the used hardware, as well as random
events in the system. Such an approach pays off very rarely
and, when it does, there is no guarantee that the obtained
good results can be consistently reproduced.

4 Experimental results

We have implemented the algorithm in C++ using MPI
libraries for message passing. Let us point out that at the
moment computations are done only for algebras overZ/pZ
for a large prime numberp.

Our experiments were conducted on a shared-memory
SGI Origin 3800 supercomputer equipped with 500 MHz
R14000 processors. Since our study was of a theoretical
nature, we developed a simple (sequential) simulator that
records the sequences of events happening in the simulated
walltime. The lengths of communication events are propor-
tional to the lengths of the sent messages, on top of which a
fixed time is added to account for the packing, putting and
getting a message from the message queue. It was possible
to tweak the parameters so that the simulated results match
closely to the real experiments outcomes.

At the present, there does not exist a good library of hard
test examples for noncommutative Gröbner bases compu-
tation. We tried our software for the “natural” input, i.e.
problems that arose naturally in our research. Here are typ-
ical ideals that we computed Gröbner bases for:

• The elimination ideal in algebra A =
k〈u, v, t, ∂t, x, y, z, ∂x, ∂y, ∂z〉 with a monomial
order eliminating commutative variablesu and
v that leads to the annihilator offs in A3[s] for
f = xyz(x + y)(x + z):

I1 = A · (−ux3yz−ux2y2z−ux2yz2−uxy2z2 + t,
3u∂tx2yz +2u∂txy2z +2u∂txyz2 +u∂ty2z2 + ∂x,
u∂tx3z + 2u∂tx2yz + u∂tx2z2 + 2u∂txyz2 + ∂y,
u∂tx3y + u∂tx2y2 + 2u∂tx2yz + 2u∂txy2z + ∂z,
uv − 1, 5t∂t + x∂x + y∂y + z∂z + 5)

• The elimination ideal in the PBW-algebraA =
k〈t, s, x, y, z, ∂x, ∂y, ∂z〉 with a product monomial or-
der that eliminatest and thens, which leads to the
same annihilator ideal via route laid out in [2]:

3



I2 = A · (tx3yz + tx2y2z + tx2yz2 + txy2z2 + s,
3tx2yz + 2txy2z + 2txyz2 + ty2z2 + ∂x,
tx3z + 2tx2yz + tx2z2 + 2txyz2 + ∂y,
tx3y + tx2y2 + 2tx2yz + 2txy2z + ∂z)

To computeBUCHBERGER(I1) it took approximately
1 minute with 1 slave and 11 seconds with 10 slaves. For
BUCHBERGER(I2) it was 15 and 2.5 seconds, respec-
tively, which provides a verification of Ucha-Castro results
in [12] on the comparison of two different methods of com-
puting the annihilator above.

For the commutative case we used such popular bench-
marks ascyclic6 , the ideal ofk[a, b, c, d, e, f ] generated
by polynomials

abcdef − 1,

abcde + abcdf + abcef + abdef + acdef + bcdef,

abcd + bcde + abcf + abef + adef + cdef,

abc + bcd + cde + abf + aef + def,

ab + bc + cd + de + af + ef,

a + b + c + d + e + f,

andcyclic7 , the ideal ofk[a, b, c, d, e, f, g] generated by
polynomials

abcdefg − 1,

abcdef + abcdeg + abcdfg + abcefg

+abdefg + acdefg + bcdefg,

abcde + bcdef + abcdg + abcfg + abefg

+adefg + cdefg,

abcd + bcde + cdef + abcg + abfg + aefg + defg,

abc + bcd + cde + def + abg + afg + efg,

ab + bc + cd + de + ef + ag + fg,

a + b + c + d + e + f + g,

as well as the family of ideals ofk[x, y, z] generated by
xm, ym, zm and a random polynomial.

All the examples that we used as benchmarks produce
between 100 and 2000 s-pairs during the computation,
which is a relatively small number. However, our objec-
tive was simply to see how our implementation behaves for
equally intense (in terms of the number of s-pairs) compu-
tations in commutative and noncommutative settings.

Figure 1 shows that computing with a small number of
processors (slaves) results in good speedups in both cases.
These fall behind what would be considered perfect (linear
speedup) but not by much.

As you see from the diagram, using more than 5 slaves
does not pay off much for both cases and using more than
10 slaves makes no sense in the commutative case, although
there is still some progress observed if things do not com-
mute.

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

1 
/ t

im
e

Number of slaves

ring of polynomials
Weyl algebra

linear

Figure 1. Speedups comparison for commu-
tative and noncommutative setting

1 2 3 4 5 6 7 8 9 10
slave number

ring of polynomials

1 2 3 4 5 6 7 8 9 10
slave number

Weyl algebra

Figure 2. Load distribution for 10 slaves in
commutative and noncommutative setting

4



0 2 4 6 8 10 12 14 16 18 20
Number of slaves

ring of polynomials
Weyl algebra

Figure 3. The number of times REDUCE task
is sent

Figure 2 provides an explanation why this behavior oc-
curs: we look at the distribution ofREDUCE requests sent
to slaves. When a decision on where to send a request is
made, the algorithm chooses the idling slave with the least
number. Therefore, the last slave probabilistically has a
chance for more rest than the first. But how bad is the distri-
bution of the load? Figure 2 shows that whenever we cease
to get a speedup close to linear (we have chosen 10 slaves to
support this point) it is quite far from uniform. On the other
hand, the situation is slightly better in the noncommutative
case.

Another factor that slows down the algorithm is the com-
munication overhead. This can be roughly measured by the
total number of times theREDUCE request is issued. For
n = 1 this number is just the number of s-pairs reduced
during the computation, however, forn > 1 by the time
a slave finishes its job and sends the reduced s-polynomial
back to the master the master’s copy of the reduction basis
might grow, making a further reduction possible; then the
master proceeds by sending an “extra”REDUCE. Usually,
the number ofREDUCEs grows with the number of slaves
used, though this growth is noticeably faster in the commu-
tative setting as opposed to noncommutative (see Figure 3).

To summarize, we would like to say that, in general,
the experimental results that we obtained confirm the
results of previous research on this subject: linear and
superlinear speedups are not possible, at least using the
strategy preserving approach. However, using small
number of CPUs for computing Gröbner bases in par-
allel is quite efficient. This has also strengthened our
believe that the payoff is even bigger if the same technique
is used in the noncommutative setting due to a better ratio of
(communication overhead)/(time spent in reduction routine).
This is also due to the lack of elaborate s-pair selection

techniques in the noncommutative case.

References

[1] G. Attardi and C. Traverso. Strategy-accurate parallel Buch-
berger algorithms.J. Symbolic Comput., 21(4-6):411–425,
1996.

[2] J. Briançon and P. Maisonobe. Remarques sur l’ideal de
Bernstein associé à des polynomes. Preprint.

[3] S. Chakrabarti and K. Yelick. Distributed data structures and
algorithms for Gr̈obner basis computation.Lisp and Sym-
bolic Computation, 7:1–27, 1994.

[4] J. Faug̀ere. A new efficient algorithm for computing Gröbner
bases without reduction to zero (F5). InProceedings of IS-
SAC 2002, pages 75–83, 2002.

[5] R. Gebauer and H. M. M̈oller. On an installation of Buch-
berger’s algorithm. J. Symbolic Comput, 6(2-3):275–286,
1988.

[6] A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso.
One sugar cube, please. InProc. ISSAC ’91, pages 49–54,
1991.

[7] W. Gropp, E. Lusk, and A. Skjellum.Using MPI. MIT
Press, 2nd edition, 1999.

[8] A. Kandri-Rody and V. Weispfenning. Non-commutative
Gröbner bases in algebras of solvable type.J. Symbolic
Computation, 9:1–26, 1990.

[9] B. Reinhard, G. Manfred, and W. K̈uchlin. A fine-grained
parallel completion procedure. InISSAC 1994, pages 269–
277, 1994.

[10] Y. Sato and A. Suzuki. Parallel computation of boolean
Gröbner bases. InElectronic Proceedings of ATCM 1999
(http://www.atcminc.com/mPublications/EP/EPATCM99),
1999.

[11] K. Siegl. A Parallel Factorization Tree Gröbner Basis Algo-
rithm. Technical Report 94-51, RISC-Linz, Johannes Kepler
University, Linz, Austria, 1994. Published in Proceedings,
PASCO’94, World Scientific Publ. Comp.

[12] J. Ucha and F. Castro-Jiménez. Bernstein-Sato ideals asso-
ciated to polynomials.Journal of Symbolic Computation,
37(5):629–639, 2004.

5


