The dimension of M is equal to the dimension of the associated graded module with respect to the Bernstein filtration.
i1 : W = QQ[x,y,Dx,Dy, WeylAlgebra => {x=>Dx,y=>Dy}]
o1 = W
o1 : PolynomialRing
|
i2 : I = ideal (x*Dx+2*y*Dy-3, Dx^2-Dy)
2
o2 = ideal (x*Dx + 2y*Dy - 3, Dx - Dy)
o2 : Ideal of W
|
i3 : Ddim I o3 = 2 |