i1 : R = QQ[x_1,x_2,D_1,D_2,WeylAlgebra=>{x_1=>D_1,x_2=>D_2}]
o1 = R
o1 : PolynomialRing
|
i2 : I = ideal(x_1, D_2-1)
o2 = ideal (x , D - 1)
1 2
o2 : Ideal of R
|
i3 : DintegrationClasses(I,{1,0})
o3 = HashTable{Boundaries => HashTable{0 => | D_2-1 |}}
1 => 0
Cycles => HashTable{0 => | 1 |}
1 => 0
1 2 1
VResolution => R <-- R <-- R
0 1 2
o3 : HashTable
|