i1 : W = QQ[x,y,Dx,Dy, WeylAlgebra => {x=>Dx,y=>Dy}]
o1 = W
o1 : PolynomialRing
|
i2 : M = W^1/(ideal(x*Dx+1, Dy))
o2 = cokernel | xDx+1 Dy |
1
o2 : W-module, quotient of W
|
i3 : f = x^2-y^3
3 2
o3 = - y + x
o3 : W
|
i4 : DlocalizeAll(M, f)
o4 = HashTable{GeneratorPower => -2 }
4 5 5 7
IntegrateBfunction => (s)(s + 1)(s + -)(s + -)(s + -)(s + -)
3 3 6 6
LocMap => | y6-2x2y3+x4 |
LocModule => cokernel | 3xDx+2yDy+15 y3Dy-x2Dy+6y2 |
o4 : HashTable
|