i1 : R = QQ[x_1,x_2,D_1,D_2,WeylAlgebra=>{x_1=>D_1,x_2=>D_2}]
o1 = R
o1 : PolynomialRing
|
i2 : I = ideal(x_1, D_2-1)
o2 = ideal (x , D - 1)
1 2
o2 : Ideal of R
|
i3 : DrestrictionComplex(I,{1,0})
1 1
o3 = 0 <-- 0 <-- (QQ[x , D ]) <-- (QQ[x , D ])
2 2 2 2
-1 0
1 2
o3 : ChainComplex
|