i1 : W = QQ[x,y,Dx,Dy, WeylAlgebra => {x=>Dx, y=>Dy}]
o1 = W
o1 : PolynomialRing
|
i2 : f = x^2-y^3
3 2
o2 = - y + x
o2 : W
|
i3 : g = 2*x*y o3 = 2x*y o3 : W |
i4 : I = RatAnn (g,f)
3 2 2 2 2 2 2 3
o4 = ideal (3x*Dx + 2y*Dy + 1, y Dy - x Dy + 6y Dy + 6y, 9y Dx Dy - 4y*Dy
------------------------------------------------------------------------
2 2 3 2 2 2
+ 27y*Dx + 2Dy , 9y Dx - 4y Dy + 10y*Dy - 10)
o4 : Ideal of W
|