i1 : W = QQ[X, dX, Y, dY, Z, dZ, WeylAlgebra=>{X=>dX, Y=>dY, Z=>dZ}]
o1 = W
o1 : PolynomialRing
|
i2 : I = ideal (X*(Y-Z), X*Y*Z) o2 = ideal (X*Y - X*Z, X*Y*Z) o2 : Ideal of W |
i3 : h = localCohom (2,I)
o3 = HashTable{2 => cokernel | -XYZ XY-XZ 3XdX-2YdY-2ZdZ YdY+ZdZ+3 Y2dY-2YdYZ-2YZdZ+Z2dZ |}
o3 : HashTable
|
i4 : pruneLocalCohom h
o4 = HashTable{2 => | Y-Z Z2 dYZ+ZdZ+2 XdX+2 |}
o4 : HashTable
|